-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlit_data.py
58 lines (50 loc) · 1.92 KB
/
lit_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from abc import ABC, abstractmethod
from typing import Tuple
import pytorch_lightning as pl
from torch.utils.data import DataLoader, Dataset
class BaseDataset(Dataset, ABC):
@abstractmethod
def split(self, *args, **kwargs) -> Tuple[Dataset, Dataset]:
"""Split the dataset into train split
and test/validation split
Returns
-------
Tuple[Dataset, Dataset]
Two Dataset instances for training and validation/testing
"""
class LitDataModule(pl.LightningDataModule):
def __init__(self, dataset: BaseDataset,
train_ratio=0.8, batch_size=32,
num_workers=2, prefetch_factor=16):
"""DataModule for PyTorch Lightning
Parameters
----------
dataset : BaseML100K
train_ratio : float, optional
By default 0.8
batch_size : int, optional
By default 32
num_workers : int, optional
Number of multi-CPU to fetch data
By default 2
prefetch_factor : int, optional
Number of batches to prefecth, by default 16
"""
self.dataset = dataset
self.train_ratio = train_ratio
self.dataloader_kwargs = {
"batch_size": batch_size,
"num_workers": num_workers,
"prefetch_factor": prefetch_factor,
}
def setup(self):
self.num_users = getattr(self.dataset, "num_users", None)
self.num_items = getattr(self.dataset, "num_items", None)
self.train_split, self.test_split = self.dataset.split(
self.train_ratio)
def train_dataloader(self):
return DataLoader(self.train_split, **self.dataloader_kwargs, shuffle=True)
def val_dataloader(self):
return DataLoader(self.test_split, **self.dataloader_kwargs, shuffle=False)
def test_dataloader(self):
return DataLoader(self.test_split, **self.dataloader_kwargs, shuffle=False)