-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlit_model.py
61 lines (48 loc) · 1.89 KB
/
lit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics import MeanSquaredError
from lit_data import LitDataModule
class LitModel(pl.LightningModule):
"""Template Lightning Module to train model"""
def __init__(self, model_class, lr=0.002, **kwargs):
super().__init__()
self.save_hyperparameters()
self.model = model_class(**kwargs)
self.lr = lr
self.sparse = getattr(self.model, "sparse", False)
self.rmse = MeanSquaredError()
def configure_optimizers(self):
if self.sparse:
return torch.optim.SparseAdam(self.parameters(), self.lr)
else:
return torch.optim.Adam(self.parameters(), self.lr, weight_decay=1e-5)
def get_loss(self, m_outputs, batch):
raise NotImplementedError()
def update_metric(self, m_outputs, batch):
raise NotImplementedError()
def forward(self, batch):
raise NotImplementedError()
def training_step(self, batch, batch_idx):
m_outputs = self(batch)
loss = self.get_loss(m_outputs, batch)
return loss
def validation_step(self, batch, batch_idx):
m_outputs = self(batch)
loss = self.get_loss(m_outputs, batch)
self.update_metric(m_outputs, batch)
return loss
def training_epoch_end(self, outputs):
avg_loss = torch.stack([x["loss"] for x in outputs]).mean()
self.logger.experiment.add_scalar(
"train/loss", avg_loss, self.current_epoch)
def validation_epoch_end(self, outputs):
avg_loss = torch.stack(outputs).mean()
self.logger.experiment.add_scalar(
"val/loss", avg_loss, self.current_epoch)
self.logger.experiment.add_scalar(
"val/rsme", self.rmse.compute(), self.current_epoch)
self.rmse.reset()