-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmf.py
75 lines (52 loc) · 2.2 KB
/
mf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning.loggers import TensorBoardLogger
from lit_data import LitDataModule
from lit_model import LitModel
from ml100k import ML100K
class MatrixFactorization(nn.Module):
def __init__(self, embedding_dims, num_users, num_items,
sparse=False, **kwargs):
super().__init__()
self.sparse = sparse
self.user_embedding = nn.Embedding(num_users, embedding_dims, sparse=sparse)
self.user_bias = nn.Embedding(num_users, 1, sparse=sparse)
self.item_embedding = nn.Embedding(num_items, embedding_dims, sparse=sparse)
self.item_bias = nn.Embedding(num_items, 1, sparse=sparse)
for param in self.parameters():
nn.init.normal_(param, std=0.01)
def forward(self, user_id, item_id):
Q = self.user_embedding(user_id)
bq = self.user_bias(user_id).flatten()
I = self.item_embedding(item_id)
bi = self.item_bias(item_id).flatten()
return (Q*I).sum(-1) + bq + bi
class LitMF(LitModel):
def get_loss(self, pred_ratings, batch):
return F.mse_loss(pred_ratings, batch[-1])
def update_metric(self, m_outputs, batch):
_, _, gt = batch
self.rmse.update(m_outputs, gt)
def forward(self, batch):
user_ids, item_ids, _ = batch
return self.model(user_ids, item_ids)
def main(args):
data = LitDataModule(ML100K(), batch_size=args.batch_size)
data.setup()
model = LitMF(MatrixFactorization, sparse=False,
num_users=data.num_users, num_items=data.num_items,
embedding_dims=args.embedding_dims)
logger = TensorBoardLogger("lightning_logs", name=f"MF_{args.embedding_dims}")
trainer = pl.Trainer.from_argparse_args(args, logger=logger)
trainer.fit(model, data)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--embedding_dims", type=int, default=30)
parser.add_argument("--batch_size", type=int, default=512)
pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
main(args)