|
| 1 | +from argparse import ArgumentParser |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytorch_lightning as pl |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | +import torch.nn.functional as F |
| 8 | +from pytorch_lightning.loggers import TensorBoardLogger |
| 9 | +from torchmetrics import Accuracy |
| 10 | + |
| 11 | +from lit_data import LitDataModule |
| 12 | +from lit_model import LitModel |
| 13 | +from ctr import CTRDataset |
| 14 | + |
| 15 | + |
| 16 | +class FactorizationMachine(nn.Module): |
| 17 | + def __init__(self, feat_dims, embedding_dims): |
| 18 | + super().__init__() |
| 19 | + num_inputs = int(sum(feat_dims)) |
| 20 | + self.embedding = nn.Embedding(num_inputs, embedding_dims) |
| 21 | + self.proj = nn.Embedding(num_inputs, 1) |
| 22 | + self.fc = nn.Linear(1, 1) |
| 23 | + for param in self.parameters(): |
| 24 | + try: |
| 25 | + nn.init.xavier_normal_(param) |
| 26 | + finally: |
| 27 | + continue |
| 28 | + |
| 29 | + def forward(self, x): |
| 30 | + v = self.embedding(x) |
| 31 | + interaction = 1/2*(v.sum(1)**2 - (v**2).sum(1)).sum(-1, keepdims=True) |
| 32 | + proj = self.proj(x).sum(1) |
| 33 | + logit = self.fc(proj + interaction) |
| 34 | + return torch.sigmoid(logit).flatten() |
| 35 | + |
| 36 | + |
| 37 | +class LitFM(pl.LightningModule): |
| 38 | + def __init__(self, lr=0.002, **kwargs): |
| 39 | + super().__init__() |
| 40 | + self.save_hyperparameters() |
| 41 | + self.model = FactorizationMachine(**kwargs) |
| 42 | + self.lr = lr |
| 43 | + self.train_acc = Accuracy() |
| 44 | + self.test_acc = Accuracy() |
| 45 | + |
| 46 | + def configure_optimizers(self): |
| 47 | + return torch.optim.Adam(self.parameters(), self.lr, weight_decay=1e-5) |
| 48 | + |
| 49 | + def forward(self, x): |
| 50 | + return self.model(x) |
| 51 | + |
| 52 | + def training_step(self, batch, batch_idx): |
| 53 | + x, y = batch |
| 54 | + ypred = self(x) |
| 55 | + loss = F.binary_cross_entropy(ypred, y.to(torch.float32)) |
| 56 | + self.train_acc.update(ypred, y) |
| 57 | + return {"loss": loss} |
| 58 | + |
| 59 | + def validation_step(self, batch, batch_idx): |
| 60 | + x, y = batch |
| 61 | + ypred = self(x) |
| 62 | + loss = F.binary_cross_entropy(ypred, y.to(torch.float32)) |
| 63 | + self.test_acc.update(ypred, y) |
| 64 | + return {"loss": loss} |
| 65 | + |
| 66 | + def training_epoch_end(self, outputs): |
| 67 | + avg_loss = torch.stack([x["loss"] for x in outputs]).mean() |
| 68 | + acc = self.train_acc.compute() |
| 69 | + self.train_acc.reset() |
| 70 | + self.logger.experiment.add_scalar( |
| 71 | + "train/loss", avg_loss, self.current_epoch) |
| 72 | + self.logger.experiment.add_scalar( |
| 73 | + "train/acc", acc, self.current_epoch) |
| 74 | + |
| 75 | + def validation_epoch_end(self, outputs): |
| 76 | + avg_loss = torch.stack([x["loss"] for x in outputs]).mean() |
| 77 | + acc = self.test_acc.compute() |
| 78 | + self.test_acc.reset() |
| 79 | + self.logger.experiment.add_scalar( |
| 80 | + "val/loss", avg_loss, self.current_epoch) |
| 81 | + self.logger.experiment.add_scalar( |
| 82 | + "val/acc", acc, self.current_epoch) |
| 83 | + |
| 84 | + |
| 85 | +def main(args): |
| 86 | + data = LitDataModule( |
| 87 | + CTRDataset(), |
| 88 | + batch_size=args.batch_size, |
| 89 | + num_workers=3, |
| 90 | + prefetch_factor=4) |
| 91 | + data.setup() |
| 92 | + |
| 93 | + model = LitFM( |
| 94 | + feat_dims=data.dataset.feat_dims, |
| 95 | + embedding_dims=args.embedding_dims) |
| 96 | + |
| 97 | + logger = TensorBoardLogger("lightning_logs", name=f"FM_{args.embedding_dims}") |
| 98 | + trainer = pl.Trainer.from_argparse_args(args, logger=logger) |
| 99 | + trainer.fit(model, data) |
| 100 | + |
| 101 | + |
| 102 | +if __name__ == "__main__": |
| 103 | + parser = ArgumentParser() |
| 104 | + parser.add_argument("--embedding_dims", type=int, default=20) |
| 105 | + parser.add_argument("--batch_size", type=int, default=1024) |
| 106 | + pl.Trainer.add_argparse_args(parser) |
| 107 | + args = parser.parse_args() |
| 108 | + main(args) |
0 commit comments