-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
A basic working version of the flux model (#663)
This version of the flux model should work, as it directly modifies the reference implementation, but could really use some refactoring, especially to reduce code duplication --------- Co-authored-by: Boian Petkantchin <[email protected]>
- Loading branch information
1 parent
f7d2681
commit 3d8cad8
Showing
3 changed files
with
538 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,251 @@ | ||
# Copyright 2024 Advanced Micro Devices, Inc. | ||
# Copyright 2024 Black Forest Labs. Inc. and Flux Authors | ||
# Copyright 2024 Advanced Micro Devices, Inc. | ||
# | ||
# Licensed under the Apache License v2.0 with LLVM Exceptions. | ||
# See https://llvm.org/LICENSE.txt for license information. | ||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
"""Model adapted from black-forest-labs' flux implementation | ||
https://github.com/black-forest-labs/flux/blob/main/src/flux/model.py | ||
""" | ||
|
||
import math | ||
from dataclasses import dataclass | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from ...layers import * | ||
from ...types import * | ||
from ...utils.create_cache import * | ||
from ... import ops | ||
|
||
__all__ = [ | ||
"FluxModelV1", | ||
] | ||
|
||
################################################################################ | ||
# Models | ||
################################################################################ | ||
|
||
|
||
@dataclass | ||
class FluxParams: | ||
in_channels: int | ||
out_channels: int | ||
vec_in_dim: int | ||
context_in_dim: int | ||
hidden_size: int | ||
mlp_ratio: float | ||
num_heads: int | ||
depth: int | ||
depth_single_blocks: int | ||
axes_dim: list[int] | ||
theta: int | ||
qkv_bias: bool | ||
guidance_embed: bool | ||
|
||
|
||
class FluxModelV1(ThetaLayer): | ||
"""FluxModel adapted from Black Forest Lab's implementation.""" | ||
|
||
def __init__(self, theta: Theta, params: FluxParams): | ||
super().__init__( | ||
theta, | ||
) | ||
|
||
self.in_channels = params.in_channels | ||
self.out_channels = self.in_channels | ||
if params.hidden_size % params.num_heads != 0: | ||
raise ValueError( | ||
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | ||
) | ||
pe_dim = params.hidden_size // params.num_heads | ||
if sum(params.axes_dim) != pe_dim: | ||
raise ValueError( | ||
f"Got {params.axes_dim} but expected positional dim {pe_dim}" | ||
) | ||
self.hidden_size = params.hidden_size | ||
self.num_heads = params.num_heads | ||
self.pe_embedder = EmbedND( | ||
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim | ||
) | ||
self.add_module("img_in", LinearLayer(theta("img_in"))) | ||
# TODO: Refactor this pattern to an MLPEmbedder like src implementatio | ||
self.add_module("time_in_0", LinearLayer(theta("time_in.0"))) | ||
self.add_module("time_in_1", LinearLayer(theta("time_in.1"))) | ||
self.add_module("vector_in_0", LinearLayer(theta("vector_in.0"))) | ||
self.add_module("vector_in_1", LinearLayer(theta("vector_in.1"))) | ||
self.guidance = False | ||
if params.guidance_embed: | ||
self.guidance = True | ||
self.add_module("guidance_in_0", LinearLayer(theta("guidance_in.0"))) | ||
self.add_module("guidance_in_1", LinearLayer(theta("guidance_in.1"))) | ||
self.add_module("txt_in", LinearLayer(theta("txt_in"))) | ||
|
||
self.double_blocks = nn.ModuleList( | ||
[ | ||
MMDITDoubleBlock( | ||
theta("double_blocks", i), | ||
self.num_heads, | ||
) | ||
for i in range(params.depth) | ||
] | ||
) | ||
|
||
self.single_blocks = nn.ModuleList( | ||
[ | ||
MMDITSingleBlock( | ||
theta("single_blocks", i), | ||
self.num_heads, | ||
) | ||
for i in range(params.depth_single_blocks) | ||
] | ||
) | ||
|
||
self.add_module( | ||
"last_layer", | ||
LastLayer(theta("last_layer")), | ||
) | ||
|
||
def forward( | ||
self, | ||
img: AnyTensor, | ||
img_ids: AnyTensor, | ||
txt: AnyTensor, | ||
txt_ids: AnyTensor, | ||
timesteps: AnyTensor, | ||
y: AnyTensor, | ||
guidance: AnyTensor | None = None, | ||
) -> AnyTensor: | ||
if img.ndim != 3 or txt.ndim != 3: | ||
raise ValueError("Input img and txt tensors must have 3 dimensions.") | ||
|
||
# running on sequences img | ||
img = self.img_in(img) | ||
time_in_0 = self.time_in_0(timestep_embedding(timesteps, 256)) | ||
time_in_silu = ops.elementwise(F.silu, time_in_0) | ||
vec = self.time_in_1(time_in_silu) | ||
if self.guidance: | ||
if guidance is None: | ||
raise ValueError( | ||
"Didn't get guidance strength for guidance distilled model." | ||
) | ||
guidance_inp = timestep_embedding(guidance, 256) | ||
guidance0 = self.guidance_in0(guidance_inp) | ||
guidance_silu = ops.elementwise(F.silu, guidance0) | ||
guidance_out = self.guidance_in1(guidance_silu) | ||
vec = vec + self.guidance_in(guidance_out) | ||
vector_in_0 = self.vector_in_0(y) | ||
vector_in_silu = ops.elementwise(F.silu, vector_in_0) | ||
vector_in_1 = self.vector_in_1(vector_in_silu) | ||
vec = vec + vector_in_1 | ||
|
||
txt = self.txt_in(txt) | ||
|
||
ids = torch.cat((txt_ids, img_ids), dim=1) | ||
pe = self.pe_embedder(ids) | ||
|
||
for block in self.double_blocks: | ||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | ||
|
||
img = torch.cat((txt, img), 1) | ||
for block in self.single_blocks: | ||
img = block(img, vec=vec, pe=pe) | ||
img = img[:, txt.shape[1] :, ...] | ||
|
||
img = self.last_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | ||
return img | ||
|
||
|
||
################################################################################ | ||
# Layers | ||
################################################################################ | ||
|
||
|
||
# TODO: Refactor these functions to other files. Rope can probably be merged with | ||
# our rotary embedding layer, some of these functions are shared with layers/mmdit.py | ||
def timestep_embedding( | ||
t: AnyTensor, dim, max_period=10000, time_factor: float = 1000.0 | ||
): | ||
""" | ||
Create sinusoidal timestep embeddings. | ||
:param t: a 1-D Tensor of N indices, one per batch element. | ||
These may be fractional. | ||
:param dim: the dimension of the output. | ||
:param max_period: controls the minimum frequency of the embeddings. | ||
:return: an (N, D) Tensor of positional embeddings. | ||
""" | ||
t = time_factor * t | ||
half = dim // 2 | ||
freqs = torch.exp( | ||
-math.log(max_period) | ||
* torch.arange(start=0, end=half, dtype=torch.float32) | ||
/ half | ||
).to(t.device) | ||
|
||
args = t[:, None].float() * freqs[None] | ||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | ||
if dim % 2: | ||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | ||
if torch.is_floating_point(t): | ||
embedding = embedding.to(t) | ||
return embedding | ||
|
||
|
||
def layer_norm(inp): | ||
weight = torch.ones(inp.shape) | ||
bias = torch.zeros(inp.shape) | ||
return ops.layer_norm(inp, weight, bias, eps=1e-6) | ||
|
||
|
||
def qk_norm(q, k, v, rms_q, rms_k): | ||
return rms_q(q).to(v), rms_k(k).to(v) | ||
|
||
|
||
def rope(pos: AnyTensor, dim: int, theta: int) -> AnyTensor: | ||
assert dim % 2 == 0 | ||
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | ||
omega = 1.0 / (theta**scale) | ||
out = torch.einsum("...n,d->...nd", pos, omega) | ||
out = torch.stack( | ||
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1 | ||
) | ||
# out = out.view(out.shape[0], out.shape[1], out.shape[2], out.shape[3], 2, 2) | ||
out = out.view(out.shape[0], out.shape[1], out.shape[2], 2, 2) | ||
return out.float() | ||
|
||
|
||
class EmbedND(torch.nn.Module): | ||
def __init__(self, dim: int, theta: int, axes_dim: list[int]): | ||
super().__init__() | ||
self.dim = dim | ||
self.theta = theta | ||
self.axes_dim = axes_dim | ||
|
||
def forward(self, ids: AnyTensor) -> AnyTensor: | ||
n_axes = ids.shape[-1] | ||
emb = torch.cat( | ||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | ||
dim=-3, | ||
) | ||
|
||
return emb.unsqueeze(1) | ||
|
||
|
||
class LastLayer(ThetaLayer): | ||
def __init__( | ||
self, | ||
theta: Theta, | ||
): | ||
super().__init__(theta) | ||
self.add_module("outlinear", LinearLayer(theta("outlinear"))) | ||
self.add_module("ada_linear", LinearLayer(theta("ada_linear"))) | ||
|
||
def forward(self, x: AnyTensor, vec: AnyTensor) -> AnyTensor: | ||
silu = ops.elementwise(F.silu, vec) | ||
lin = self.ada_linear(silu) | ||
shift, scale = lin.chunk(2, dim=1) | ||
x = (1 + scale[:, None, :]) * layer_norm(x) + shift[:, None, :] | ||
x = self.outlinear(x) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.