|
| 1 | + |
| 2 | +/** |
| 3 | + * --- Day 2: Corruption Checksum --- |
| 4 | + * |
| 5 | + * As you walk through the door, a glowing humanoid shape yells in your |
| 6 | + * direction. "You there! Your state appears to be idle. Come help us repair the |
| 7 | + * corruption in this spreadsheet - if we take another millisecond, we'll have |
| 8 | + * to display an hourglass cursor!" |
| 9 | + * |
| 10 | + * The spreadsheet consists of rows of apparently-random numbers. To make sure |
| 11 | + * the recovery process is on the right track, they need you to calculate the |
| 12 | + * spreadsheet's checksum. For each row, determine the difference between the |
| 13 | + * largest value and the smallest value; the checksum is the sum of all of these |
| 14 | + * differences. |
| 15 | + * |
| 16 | + * For example, given the following spreadsheet: |
| 17 | + * |
| 18 | + * 5 1 9 5 |
| 19 | + * 7 5 3 |
| 20 | + * 2 4 6 8 |
| 21 | + * |
| 22 | + * The first row's largest and smallest values are 9 and 1, and their difference is 8. |
| 23 | + * The second row's largest and smallest values are 7 and 3, and their difference is 4. |
| 24 | + * The third row's difference is 6. |
| 25 | + * In this example, the spreadsheet's checksum would be 8 + 4 + 6 = 18. |
| 26 | + */ |
| 27 | +public class Day2 { |
| 28 | + |
| 29 | + public static int part1(String input) { |
| 30 | + String[] rows = input.split("\n"); |
| 31 | + int result = 0; |
| 32 | + for (String row : rows) { |
| 33 | + int max = -1; |
| 34 | + int min = Integer.MAX_VALUE; |
| 35 | + String[] numbers = row.split("\t"); |
| 36 | + for (String number : numbers) { |
| 37 | + int n = Integer.parseInt(number); |
| 38 | + if (max < n) { |
| 39 | + max = n; |
| 40 | + } |
| 41 | + if (min > n) { |
| 42 | + min = n; |
| 43 | + } |
| 44 | + } |
| 45 | + result += (max - min); |
| 46 | + } |
| 47 | + |
| 48 | + return result; |
| 49 | + } |
| 50 | + |
| 51 | + /** |
| 52 | + * Evenly divisible |
| 53 | + * |
| 54 | + * @param input |
| 55 | + * @return |
| 56 | + */ |
| 57 | + public static int part2(String input) { |
| 58 | + String[] rows = input.split("\n"); |
| 59 | + int result = 0; |
| 60 | + for (String row : rows) { |
| 61 | + String[] numbers = row.split("\t"); |
| 62 | + result += addDivisibles(0, 1, numbers); |
| 63 | + } |
| 64 | + |
| 65 | + return result; |
| 66 | + } |
| 67 | + |
| 68 | + private static int addDivisibles(int i, int j, String[] numbers) { |
| 69 | + if (i < j && j < numbers.length) { |
| 70 | + int a = Integer.parseInt(numbers[i]); |
| 71 | + int b = Integer.parseInt(numbers[j]); |
| 72 | + |
| 73 | + int d = addDivisible(a, b); |
| 74 | + if (d == 0) { |
| 75 | + int x = addDivisibles(i + 1, j, numbers); |
| 76 | + if (x == 0) |
| 77 | + return addDivisibles(i, j + 1, numbers); |
| 78 | + else |
| 79 | + return x; |
| 80 | + } |
| 81 | + else |
| 82 | + return d; |
| 83 | + } |
| 84 | + else |
| 85 | + return 0; |
| 86 | + } |
| 87 | + |
| 88 | + private static int addDivisible(int n, int m) { |
| 89 | + if (n % m == 0) { |
| 90 | + return n / m; |
| 91 | + } |
| 92 | + else if (m % n == 0) { |
| 93 | + return m / n; |
| 94 | + } |
| 95 | + return 0; |
| 96 | + } |
0 commit comments