-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadafruit_mlx90640.py
810 lines (672 loc) · 25.9 KB
/
adafruit_mlx90640.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
import struct
import math
import time
import machine
__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_MLX90640.git"
# We match the melexis library naming, and don't want to change
# pylint: disable=invalid-name
eeData = [0] * 832
I2C_READ_LEN = 2048
SCALEALPHA = 0.000001
MLX90640_DEVICEID1 = 0x2407
OPENAIR_TA_SHIFT = 8
class RefreshRate: # pylint: disable=too-few-public-methods
"""Enum-like class for MLX90640's refresh rate"""
REFRESH_0_5_HZ = 0b000 # 0.5Hz
REFRESH_1_HZ = 0b001 # 1Hz
REFRESH_2_HZ = 0b010 # 2Hz
REFRESH_4_HZ = 0b011 # 4Hz
REFRESH_8_HZ = 0b100 # 8Hz
REFRESH_16_HZ = 0b101 # 16Hz
REFRESH_32_HZ = 0b110 # 32Hz
REFRESH_64_HZ = 0b111 # 64Hz
class MLX90640: # pylint: disable=too-many-instance-attributes
"""Interface to the MLX90640 temperature sensor."""
kVdd = 0
vdd25 = 0
KvPTAT = 0
KtPTAT = 0
vPTAT25 = 0
alphaPTAT = 0
gainEE = 0
tgc = 0
KsTa = 0
resolutionEE = 0
calibrationModeEE = 0
ksTo = [0] * 5
ct = [0] * 5
alpha = [0] * 768
alphaScale = 0
offset = [0] * 768
kta = [0] * 768
ktaScale = 0
kv = [0] * 768
kvScale = 0
cpAlpha = [0] * 2
cpOffset = [0] * 2
ilChessC = [0] * 3
brokenPixels = []
outlierPixels = []
cpKta = 0
cpKv = 0
device_address = 0x33
i2c_device: machine.I2C
inbuf = memoryview(bytearray(I2C_READ_LEN*2))
def __init__(self, i2c_bus, address=0x33):
self.device_address = address
self.i2c_device = i2c_bus
self._I2CReadWords(0x2400, eeData)
# print(eeData)
self._ExtractParameters()
@property
def serial_number(self):
"""3-item tuple of hex values that are unique to each MLX90640"""
serialWords = [0, 0, 0]
self._I2CReadWords(MLX90640_DEVICEID1, serialWords)
return serialWords
@property
def refresh_rate(self):
"""How fast the MLX90640 will spit out data. Start at lowest speed in
RefreshRate and then slowly increase I2C clock rate and rate until you
max out. The sensor does not like it if the I2C host cannot 'keep up'!"""
controlRegister = [0]
self._I2CReadWords(0x800D, controlRegister)
return (controlRegister[0] >> 7) & 0x07
@refresh_rate.setter
def refresh_rate(self, rate):
controlRegister = [0]
value = (rate & 0x7) << 7
self._I2CReadWords(0x800D, controlRegister)
value |= controlRegister[0] & 0xFC7F
self._I2CWriteWord(0x800D, value)
def getFrame(self, framebuf):
"""Request both 'halves' of a frame from the sensor, merge them
and calculate the temperature in C for each of 32x24 pixels. Placed
into the 768-element array passed in!"""
emissivity = 0.95
tr = 23.15
mlx90640Frame = [0] * 834
for _ in range(2):
status = self._GetFrameData(mlx90640Frame)
if status < 0:
raise RuntimeError("Frame data error")
# For a MLX90640 in the open air the shift is -8 degC.
tr = self._GetTa(mlx90640Frame) - OPENAIR_TA_SHIFT
self._CalculateTo(mlx90640Frame, emissivity, tr, framebuf)
def _GetFrameData(self, frameData):
dataReady = 0
cnt = 0
statusRegister = [0]
controlRegister = [0]
while dataReady == 0:
self._I2CReadWords(0x8000, statusRegister)
dataReady = statusRegister[0] & 0x0008
# print("ready status: 0x%x" % dataReady)
while (dataReady != 0) and (cnt < 5):
self._I2CWriteWord(0x8000, 0x0030)
# print("Read frame", cnt)
self._I2CReadWords(0x0400, frameData, end=832)
self._I2CReadWords(0x8000, statusRegister)
dataReady = statusRegister[0] & 0x0008
# print("frame ready: 0x%x" % dataReady)
cnt += 1
if cnt > 4: raise RuntimeError("Too many retries")
self._I2CReadWords(0x800D, controlRegister)
frameData[832] = controlRegister[0]
frameData[833] = statusRegister[0] & 0x0001
return frameData[833]
def _GetTa(self, frameData):
vdd = self._GetVdd(frameData)
ptat = frameData[800]
if ptat > 32767: ptat -= 65536
ptatArt = frameData[768]
if ptatArt > 32767: ptatArt -= 65536
ptatArt = (ptat / (ptat * self.alphaPTAT + ptatArt)) * math.pow(2, 18)
ta = ptatArt / (1 + self.KvPTAT * (vdd - 3.3)) - self.vPTAT25
ta = ta / self.KtPTAT + 25
return ta
def _GetVdd(self, frameData):
vdd = frameData[810]
if vdd > 32767:
vdd -= 65536
resolutionRAM = (frameData[832] & 0x0C00) >> 10
resolutionCorrection = math.pow(2, self.resolutionEE) / math.pow(
2, resolutionRAM
)
vdd = (resolutionCorrection * vdd - self.vdd25) / self.kVdd + 3.3
return vdd
def _CalculateTo(self, frameData, emissivity, tr, result):
# pylint: disable=too-many-locals, too-many-branches, too-many-statements
subPage = frameData[833]
alphaCorrR = [0] * 4
irDataCP = [0, 0]
vdd = self._GetVdd(frameData)
ta = self._GetTa(frameData)
ta4 = ta + 273.15
ta4 = ta4 * ta4
ta4 = ta4 * ta4
tr4 = tr + 273.15
tr4 = tr4 * tr4
tr4 = tr4 * tr4
taTr = tr4 - (tr4 - ta4) / emissivity
ktaScale = math.pow(2, self.ktaScale)
kvScale = math.pow(2, self.kvScale)
alphaScale = math.pow(2, self.alphaScale)
alphaCorrR[0] = 1 / (1 + self.ksTo[0] * 40)
alphaCorrR[1] = 1
alphaCorrR[2] = 1 + self.ksTo[1] * self.ct[2]
alphaCorrR[3] = alphaCorrR[2] * (1 + self.ksTo[2] * (self.ct[3] - self.ct[2]))
# --------- Gain calculation -----------------------------------
gain = frameData[778]
if gain > 32767: gain -= 65536
gain = self.gainEE / gain
# --------- To calculation -------------------------------------
mode = (frameData[832] & 0x1000) >> 5
irDataCP[0] = frameData[776]
irDataCP[1] = frameData[808]
for i in range(2):
if irDataCP[i] > 32767: irDataCP[i] -= 65536
irDataCP[i] *= gain
irDataCP[0] -= (self.cpOffset[0] * (1 + self.cpKta * (ta - 25)) * (1 + self.cpKv * (vdd - 3.3)))
if mode == self.calibrationModeEE: irDataCP[1] -= (self.cpOffset[1] * (1 + self.cpKta * (ta - 25)) * (1 + self.cpKv * (vdd - 3.3)))
else: irDataCP[1] -= ((self.cpOffset[1] + self.ilChessC[0]) * (1 + self.cpKta * (ta - 25)) * (1 + self.cpKv * (vdd - 3.3)))
for pixelNumber in range(768):
if self._IsPixelBad(pixelNumber):
# print("Fixing broken pixel %d" % pixelNumber)
result[pixelNumber] = -273.15
continue
ilPattern = pixelNumber // 32 - (pixelNumber // 64) * 2
chessPattern = ilPattern ^ (pixelNumber - (pixelNumber // 2) * 2)
conversionPattern = ((pixelNumber + 2) // 4 - (pixelNumber + 3) // 4 + (pixelNumber + 1) // 4 - pixelNumber // 4) * (1 - 2 * ilPattern)
if mode == 0:
pattern = ilPattern
else:
pattern = chessPattern
if pattern == frameData[833]:
irData = frameData[pixelNumber]
if irData > 32767:
irData -= 65536
irData *= gain
kta = self.kta[pixelNumber] / ktaScale
kv = self.kv[pixelNumber] / kvScale
irData -= (
self.offset[pixelNumber]
* (1 + kta * (ta - 25))
* (1 + kv * (vdd - 3.3))
)
if mode != self.calibrationModeEE:
irData += (
self.ilChessC[2] * (2 * ilPattern - 1)
- self.ilChessC[1] * conversionPattern
)
irData = irData - self.tgc * irDataCP[subPage]
irData /= emissivity
alphaCompensated = SCALEALPHA * alphaScale / self.alpha[pixelNumber]
alphaCompensated *= 1 + self.KsTa * (ta - 25)
Sx = (
alphaCompensated
* alphaCompensated
* alphaCompensated
* (irData + alphaCompensated * taTr)
)
Sx = math.sqrt(math.sqrt(Sx)) * self.ksTo[1]
To = (
math.sqrt(
math.sqrt(
irData
/ (alphaCompensated * (1 - self.ksTo[1] * 273.15) + Sx)
+ taTr
)
)
- 273.15
)
if To < self.ct[1]:
torange = 0
elif To < self.ct[2]:
torange = 1
elif To < self.ct[3]:
torange = 2
else:
torange = 3
To = int(math.sqrt(
math.sqrt(
irData
/ (
alphaCompensated
* alphaCorrR[torange]
* (1 + self.ksTo[torange] * (To - self.ct[torange]))
)
+ taTr
)
)
- 273.15
)
result[pixelNumber] = To
# pylint: enable=too-many-locals, too-many-branches, too-many-statements
def _ExtractParameters(self):
self._ExtractVDDParameters()
self._ExtractPTATParameters()
self._ExtractGainParameters()
self._ExtractTgcParameters()
self._ExtractResolutionParameters()
self._ExtractKsTaParameters()
self._ExtractKsToParameters()
self._ExtractCPParameters()
self._ExtractAlphaParameters()
self._ExtractOffsetParameters()
self._ExtractKtaPixelParameters()
self._ExtractKvPixelParameters()
self._ExtractCILCParameters()
self._ExtractDeviatingPixels()
# debug output
# print('-'*40)
# print("kVdd = %d, vdd25 = %d" % (self.kVdd, self.vdd25))
# print("KvPTAT = %f, KtPTAT = %f, vPTAT25 = %d, alphaPTAT = %f" %
# (self.KvPTAT, self.KtPTAT, self.vPTAT25, self.alphaPTAT))
# print("Gain = %d, Tgc = %f, Resolution = %d" % (self.gainEE, self.tgc, self.resolutionEE))
# print("KsTa = %f, ksTo = %s, ct = %s" % (self.KsTa, self.ksTo, self.ct))
# print("cpAlpha:", self.cpAlpha, "cpOffset:", self.cpOffset)
# print("alpha: ", self.alpha)
# print("alphascale: ", self.alphaScale)
# print("offset: ", self.offset)
# print("kta:", self.kta)
# print("ktaScale:", self.ktaScale)
# print("kv:", self.kv)
# print("kvScale:", self.kvScale)
# print("calibrationModeEE:", self.calibrationModeEE)
# print("ilChessC:", self.ilChessC)
# print('-'*40)
def _ExtractVDDParameters(self):
# extract VDD
self.kVdd = (eeData[51] & 0xFF00) >> 8
if self.kVdd > 127:
self.kVdd -= 256 # convert to signed
self.kVdd *= 32
self.vdd25 = eeData[51] & 0x00FF
self.vdd25 = ((self.vdd25 - 256) << 5) - 8192
def _ExtractPTATParameters(self):
# extract PTAT
self.KvPTAT = (eeData[50] & 0xFC00) >> 10
if self.KvPTAT > 31:
self.KvPTAT -= 64
self.KvPTAT /= 4096
self.KtPTAT = eeData[50] & 0x03FF
if self.KtPTAT > 511:
self.KtPTAT -= 1024
self.KtPTAT /= 8
self.vPTAT25 = eeData[49]
self.alphaPTAT = (eeData[16] & 0xF000) / math.pow(2, 14) + 8
def _ExtractGainParameters(self):
# extract Gain
self.gainEE = eeData[48]
if self.gainEE > 32767:
self.gainEE -= 65536
def _ExtractTgcParameters(self):
# extract Tgc
self.tgc = eeData[60] & 0x00FF
if self.tgc > 127:
self.tgc -= 256
self.tgc /= 32
def _ExtractResolutionParameters(self):
# extract resolution
self.resolutionEE = (eeData[56] & 0x3000) >> 12
def _ExtractKsTaParameters(self):
# extract KsTa
self.KsTa = (eeData[60] & 0xFF00) >> 8
if self.KsTa > 127:
self.KsTa -= 256
self.KsTa /= 8192
def _ExtractKsToParameters(self):
# extract ksTo
step = ((eeData[63] & 0x3000) >> 12) * 10
self.ct[0] = -40
self.ct[1] = 0
self.ct[2] = (eeData[63] & 0x00F0) >> 4
self.ct[3] = (eeData[63] & 0x0F00) >> 8
self.ct[2] *= step
self.ct[3] = self.ct[2] + self.ct[3] * step
KsToScale = (eeData[63] & 0x000F) + 8
KsToScale = 1 << KsToScale
self.ksTo[0] = eeData[61] & 0x00FF
self.ksTo[1] = (eeData[61] & 0xFF00) >> 8
self.ksTo[2] = eeData[62] & 0x00FF
self.ksTo[3] = (eeData[62] & 0xFF00) >> 8
for i in range(4):
if self.ksTo[i] > 127:
self.ksTo[i] -= 256
self.ksTo[i] /= KsToScale
self.ksTo[4] = -0.0002
def _ExtractCPParameters(self):
# extract CP
offsetSP = [0] * 2
alphaSP = [0] * 2
alphaScale = ((eeData[32] & 0xF000) >> 12) + 27
offsetSP[0] = eeData[58] & 0x03FF
if offsetSP[0] > 511:
offsetSP[0] -= 1024
offsetSP[1] = (eeData[58] & 0xFC00) >> 10
if offsetSP[1] > 31:
offsetSP[1] -= 64
offsetSP[1] += offsetSP[0]
alphaSP[0] = eeData[57] & 0x03FF
if alphaSP[0] > 511:
alphaSP[0] -= 1024
alphaSP[0] /= math.pow(2, alphaScale)
alphaSP[1] = (eeData[57] & 0xFC00) >> 10
if alphaSP[1] > 31:
alphaSP[1] -= 64
alphaSP[1] = (1 + alphaSP[1] / 128) * alphaSP[0]
cpKta = eeData[59] & 0x00FF
if cpKta > 127:
cpKta -= 256
ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8
self.cpKta = cpKta / math.pow(2, ktaScale1)
cpKv = (eeData[59] & 0xFF00) >> 8
if cpKv > 127:
cpKv -= 256
kvScale = (eeData[56] & 0x0F00) >> 8
self.cpKv = cpKv / math.pow(2, kvScale)
self.cpAlpha[0] = alphaSP[0]
self.cpAlpha[1] = alphaSP[1]
self.cpOffset[0] = offsetSP[0]
self.cpOffset[1] = offsetSP[1]
def _ExtractAlphaParameters(self):
# extract alpha
accRemScale = eeData[32] & 0x000F
accColumnScale = (eeData[32] & 0x00F0) >> 4
accRowScale = (eeData[32] & 0x0F00) >> 8
alphaScale = ((eeData[32] & 0xF000) >> 12) + 30
alphaRef = eeData[33]
accRow = [0] * 24
accColumn = [0] * 32
alphaTemp = [0] * 768
for i in range(6):
p = i * 4
accRow[p + 0] = eeData[34 + i] & 0x000F
accRow[p + 1] = (eeData[34 + i] & 0x00F0) >> 4
accRow[p + 2] = (eeData[34 + i] & 0x0F00) >> 8
accRow[p + 3] = (eeData[34 + i] & 0xF000) >> 12
for i in range(24):
if accRow[i] > 7:
accRow[i] -= 16
for i in range(8):
p = i * 4
accColumn[p + 0] = eeData[40 + i] & 0x000F
accColumn[p + 1] = (eeData[40 + i] & 0x00F0) >> 4
accColumn[p + 2] = (eeData[40 + i] & 0x0F00) >> 8
accColumn[p + 3] = (eeData[40 + i] & 0xF000) >> 12
for i in range(32):
if accColumn[i] > 7:
accColumn[i] -= 16
for i in range(24):
for j in range(32):
p = 32 * i + j
alphaTemp[p] = (eeData[64 + p] & 0x03F0) >> 4
if alphaTemp[p] > 31:
alphaTemp[p] -= 64
alphaTemp[p] *= 1 << accRemScale
alphaTemp[p] += (
alphaRef
+ (accRow[i] << accRowScale)
+ (accColumn[j] << accColumnScale)
)
alphaTemp[p] /= math.pow(2, alphaScale)
alphaTemp[p] -= self.tgc * (self.cpAlpha[0] + self.cpAlpha[1]) / 2
alphaTemp[p] = SCALEALPHA / alphaTemp[p]
# print("alphaTemp: ", alphaTemp)
temp = max(alphaTemp)
# print("temp", temp)
alphaScale = 0
while temp < 32768:
temp *= 2
alphaScale += 1
for i in range(768):
temp = alphaTemp[i] * math.pow(2, alphaScale)
self.alpha[i] = int(temp + 0.5)
self.alphaScale = alphaScale
def _ExtractOffsetParameters(self):
# extract offset
occRow = [0] * 24
occColumn = [0] * 32
occRemScale = eeData[16] & 0x000F
occColumnScale = (eeData[16] & 0x00F0) >> 4
occRowScale = (eeData[16] & 0x0F00) >> 8
offsetRef = eeData[17]
if offsetRef > 32767:
offsetRef -= 65536
for i in range(6):
p = i * 4
occRow[p + 0] = eeData[18 + i] & 0x000F
occRow[p + 1] = (eeData[18 + i] & 0x00F0) >> 4
occRow[p + 2] = (eeData[18 + i] & 0x0F00) >> 8
occRow[p + 3] = (eeData[18 + i] & 0xF000) >> 12
for i in range(24):
if occRow[i] > 7:
occRow[i] -= 16
for i in range(8):
p = i * 4
occColumn[p + 0] = eeData[24 + i] & 0x000F
occColumn[p + 1] = (eeData[24 + i] & 0x00F0) >> 4
occColumn[p + 2] = (eeData[24 + i] & 0x0F00) >> 8
occColumn[p + 3] = (eeData[24 + i] & 0xF000) >> 12
for i in range(32):
if occColumn[i] > 7:
occColumn[i] -= 16
for i in range(24):
for j in range(32):
p = 32 * i + j
self.offset[p] = (eeData[64 + p] & 0xFC00) >> 10
if self.offset[p] > 31:
self.offset[p] -= 64
self.offset[p] *= 1 << occRemScale
self.offset[p] += (
offsetRef
+ (occRow[i] << occRowScale)
+ (occColumn[j] << occColumnScale)
)
def _ExtractKtaPixelParameters(self): # pylint: disable=too-many-locals
# extract KtaPixel
KtaRC = [0] * 4
ktaTemp = [0] * 768
KtaRoCo = (eeData[54] & 0xFF00) >> 8
if KtaRoCo > 127:
KtaRoCo -= 256
KtaRC[0] = KtaRoCo
KtaReCo = eeData[54] & 0x00FF
if KtaReCo > 127:
KtaReCo -= 256
KtaRC[2] = KtaReCo
KtaRoCe = (eeData[55] & 0xFF00) >> 8
if KtaRoCe > 127:
KtaRoCe -= 256
KtaRC[1] = KtaRoCe
KtaReCe = eeData[55] & 0x00FF
if KtaReCe > 127:
KtaReCe -= 256
KtaRC[3] = KtaReCe
ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8
ktaScale2 = eeData[56] & 0x000F
for i in range(24):
for j in range(32):
p = 32 * i + j
split = 2 * (p // 32 - (p // 64) * 2) + p % 2
ktaTemp[p] = (eeData[64 + p] & 0x000E) >> 1
if ktaTemp[p] > 3:
ktaTemp[p] -= 8
ktaTemp[p] *= 1 << ktaScale2
ktaTemp[p] += KtaRC[split]
ktaTemp[p] /= math.pow(2, ktaScale1)
# ktaTemp[p] = ktaTemp[p] * mlx90640->offset[p];
temp = abs(ktaTemp[0])
for kta in ktaTemp:
temp = max(temp, abs(kta))
ktaScale1 = 0
while temp < 64:
temp *= 2
ktaScale1 += 1
for i in range(768):
temp = ktaTemp[i] * math.pow(2, ktaScale1)
if temp < 0:
self.kta[i] = int(temp - 0.5)
else:
self.kta[i] = int(temp + 0.5)
self.ktaScale = ktaScale1
def _ExtractKvPixelParameters(self):
KvT = [0] * 4
kvTemp = [0] * 768
KvRoCo = (eeData[52] & 0xF000) >> 12
if KvRoCo > 7:
KvRoCo -= 16
KvT[0] = KvRoCo
KvReCo = (eeData[52] & 0x0F00) >> 8
if KvReCo > 7:
KvReCo -= 16
KvT[2] = KvReCo
KvRoCe = (eeData[52] & 0x00F0) >> 4
if KvRoCe > 7:
KvRoCe -= 16
KvT[1] = KvRoCe
KvReCe = eeData[52] & 0x000F
if KvReCe > 7:
KvReCe -= 16
KvT[3] = KvReCe
kvScale = (eeData[56] & 0x0F00) >> 8
for i in range(24):
for j in range(32):
p = 32 * i + j
split = 2 * (p // 32 - (p // 64) * 2) + p % 2
kvTemp[p] = KvT[split]
kvTemp[p] /= math.pow(2, kvScale)
# kvTemp[p] = kvTemp[p] * mlx90640->offset[p];
temp = abs(kvTemp[0])
for kv in kvTemp:
temp = max(temp, abs(kv))
kvScale = 0
while temp < 64:
temp *= 2
kvScale += 1
for i in range(768):
temp = kvTemp[i] * math.pow(2, kvScale)
if temp < 0:
self.kv[i] = int(temp - 0.5)
else:
self.kv[i] = int(temp + 0.5)
self.kvScale = kvScale
def _ExtractCILCParameters(self):
ilChessC = [0] * 3
self.calibrationModeEE = (eeData[10] & 0x0800) >> 4
self.calibrationModeEE = self.calibrationModeEE ^ 0x80
ilChessC[0] = eeData[53] & 0x003F
if ilChessC[0] > 31:
ilChessC[0] -= 64
ilChessC[0] /= 16.0
ilChessC[1] = (eeData[53] & 0x07C0) >> 6
if ilChessC[1] > 15:
ilChessC[1] -= 32
ilChessC[1] /= 2.0
ilChessC[2] = (eeData[53] & 0xF800) >> 11
if ilChessC[2] > 15:
ilChessC[2] -= 32
ilChessC[2] /= 8.0
self.ilChessC = ilChessC
def _ExtractDeviatingPixels(self):
# pylint: disable=too-many-branches
pixCnt = 0
while (
(pixCnt < 768)
and (len(self.brokenPixels) < 5)
and (len(self.outlierPixels) < 5)
):
if eeData[pixCnt + 64] == 0:
self.brokenPixels.append(pixCnt)
elif (eeData[pixCnt + 64] & 0x0001) != 0:
self.outlierPixels.append(pixCnt)
pixCnt += 1
if len(self.brokenPixels) > 4:
raise RuntimeError("More than 4 broken pixels")
if len(self.outlierPixels) > 4:
raise RuntimeError("More than 4 outlier pixels")
if (len(self.brokenPixels) + len(self.outlierPixels)) > 4:
raise RuntimeError("More than 4 faulty pixels")
# print("Found %d broken pixels, %d outliers"
# % (len(self.brokenPixels), len(self.outlierPixels)))
for brokenPixel1, brokenPixel2 in self._UniqueListPairs(self.brokenPixels):
if self._ArePixelsAdjacent(brokenPixel1, brokenPixel2):
raise RuntimeError("Adjacent broken pixels")
for outlierPixel1, outlierPixel2 in self._UniqueListPairs(self.outlierPixels):
if self._ArePixelsAdjacent(outlierPixel1, outlierPixel2):
raise RuntimeError("Adjacent outlier pixels")
for brokenPixel in self.brokenPixels:
for outlierPixel in self.outlierPixels:
if self._ArePixelsAdjacent(brokenPixel, outlierPixel):
raise RuntimeError("Adjacent broken and outlier pixels")
def _UniqueListPairs(self, inputList):
# pylint: disable=no-self-use
for i, listValue1 in enumerate(inputList):
for listValue2 in inputList[i + 1 :]:
yield (listValue1, listValue2)
def _ArePixelsAdjacent(self, pix1, pix2):
# pylint: disable=no-self-use
pixPosDif = pix1 - pix2
if -34 < pixPosDif < -30:
return True
if -2 < pixPosDif < 2:
return True
if 30 < pixPosDif < 34:
return True
return False
def _IsPixelBad(self, pixel):
if pixel in self.brokenPixels or pixel in self.outlierPixels:
return True
return False
def _I2CWriteWord(self, writeAddress, data):
cmd = bytearray(4)
cmd[0] = writeAddress >> 8
cmd[1] = writeAddress & 0x00FF
cmd[2] = data >> 8
cmd[3] = data & 0x00FF
dataCheck = [0]
self.i2c_device.writeto(self.device_address, cmd)
# print("Wrote:", [hex(i) for i in cmd])
time.sleep(0.001)
self._I2CReadWords(writeAddress, dataCheck)
# print("dataCheck: 0x%x" % dataCheck[0])
# if (dataCheck != data):
# return -2
def _I2CReadWords(self, addr, buffer, *, end=None):
# stamp = time.monotonic()
if end is None:
remainingWords = len(buffer)
else:
remainingWords = end
offset = 0
addrbuf = bytearray(2)
while remainingWords:
addrbuf[0] = addr >> 8 # MSB
addrbuf[1] = addr & 0xFF # LSB
read_words = min(remainingWords, I2C_READ_LEN)
# self.i2c_device.writeto(self.device_address, addrbuf)
self.i2c_device.readfrom_mem_into(self.device_address, addr, self.inbuf[0:read_words*2], addrsize=16)
# print("-> ", [hex(i) for i in addrbuf])
temp = read_words//10
temps = [0]
for i in range(9):
temps.append(temps[i]+temp*2)
for i in range(9):
outwords = struct.unpack(
">" + "H" * temp, self.inbuf[temps[i] : temps[i+1]]
)
for i, w in enumerate(outwords):
buffer[offset + i] = w
offset += temp
del outwords
outwords = struct.unpack(
">" + "H" * (read_words-9*temp), self.inbuf[temps[9] : read_words*2]
)
for i, w in enumerate(outwords):
buffer[offset + i] = w
offset += (read_words-9*temp)
del outwords
remainingWords -= read_words
addr += read_words