-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
704 lines (625 loc) · 31.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
import os
import numpy as np
import math
import pickle
import random
from random import randrange
from utilities import pickling
import torch
from torch.utils.data import Dataset
import torchvision
import collections
import SimpleITK as sitk
import h5py
import torchio
from argparse import Namespace
from typing import List
def resample_volume(volume: sitk.Image,
new_spacing: List[float],
interpolator=sitk.sitkLinear) -> sitk.Image:
"""
Change spacing
:param volume: Input image to be resampled
:param new_spacing: For our volumes this should be a 3-item list
i.e. (1.0, 1.0, 1.0)
:param interpolator: Which interpolator to use
"""
new_size = [int(round(osz*ospc/nspc))
for osz, ospc, nspc
in zip(volume.GetSize(), volume.GetSpacing(), new_spacing)]
minimum_value = sitk.GetArrayFromImage(volume).min()
return sitk.Resample(volume,
new_size,
sitk.Transform(),
interpolator,
volume.GetOrigin(),
new_spacing,
volume.GetDirection(),
int(minimum_value),
volume.GetPixelID())
class MRIDataset(Dataset):
def __init__(self, parameters, phase: str):
if type(parameters) == dict:
parameters = Namespace(**parameters)
self.parameters = parameters
self.phase = phase
self.random_seed = 0
metadata = pickle.load(open(parameters.metadata, "rb"))
self.metadata = metadata
assert phase in ["training", "validation", "test"], "Unspecified phase"
# Read data list
(
data_list_training,
data_list_validation,
data_list_test,
) = pickling.unpickle_from_file(self.parameters.datalist)
print(parameters.label_type)
print("data list length before:", len(data_list_training), len(data_list_validation), len(data_list_test))
if parameters.label_type == 'birads':
# only birads 1,2,3,4,5,6
print("Generating data list for BIRADS")
good_birads = parameters.subgroup_df[parameters.subgroup_df.birads.isin([1,2,3,4,5,6])]
good_birads_acns = good_birads.Acc.values
data_list_training = {k: v for k, v in data_list_training.items() if k in good_birads_acns}
data_list_validation = {k: v for k, v in data_list_validation.items() if k in good_birads_acns}
# Convert BI-RADS to one-hot labels
# Combine 4+5 as one class
birads_dict = {}
birads_dict_temp = good_birads[['Acc', 'birads']].set_index('Acc').to_dict(orient='index')
for acc, d in birads_dict_temp.items():
b = d['birads'] # This study bi-rads
new_label = np.zeros((5), dtype=int)
if b == 1: # bi-rads 1
new_label[0] = 1
elif b == 2: # bi-rads 2
new_label[1] = 1
elif b == 3: # bi-rads 3
new_label[2] = 1
elif b == 4 or b == 5: # bi-rads 4 and 5
new_label[3] = 1
elif b == 6: # bi-rads 6
new_label[4] = 1
birads_dict[acc] = new_label
self.birads_dict = birads_dict
elif parameters.label_type == 'bpe':
# Only studies with known BPE
print("Generating data list for BPE")
good_bpe = parameters.subgroup_df[parameters.subgroup_df.bpe.isin(['minimal', 'mild', 'moderate', 'marked'])]
good_bpe_acns = good_bpe.Acc.values
data_list_training = {k: v for k, v in data_list_training.items() if k in good_bpe_acns}
data_list_validation = {k: v for k, v in data_list_validation.items() if k in good_bpe_acns}
bpe_labels_dict = {}
bpe_labels_temporary = good_bpe[['Acc', 'bpe']].set_index('Acc').to_dict(orient='index')
for acc, d in bpe_labels_temporary.items():
bpe = d['bpe']
new_label = np.zeros((4), dtype=int)
if bpe == 'minimal':
new_label[0] = 1
elif bpe == 'mild':
new_label[1] = 1
elif bpe == 'moderate':
new_label[2] = 1
elif bpe == 'marked':
new_label[3] = 1
bpe_labels_dict[acc] = new_label
self.bpe_labels_dict = bpe_labels_dict
print("data list length after:", len(data_list_training), len(data_list_validation), len(data_list_test))
if phase == "training":
self.data_list = data_list_training
number_of_all_training_examples = len(self.data_list)
if self.parameters.number_of_training_samples is not None:
number_of_remaining_training_examples = self.parameters.number_of_training_samples
else:
number_of_remaining_training_examples = math.ceil(
number_of_all_training_examples * self.parameters.training_fraction
)
print(f"*** There are {number_of_remaining_training_examples} training examples to go through")
self.data_list = collections.OrderedDict(
list(self.data_list.items())[:number_of_remaining_training_examples]
)
elif phase == "validation":
if self.parameters.validation_fraction != 1. or self.parameters.number_of_validation_samples is not None:
if self.parameters.number_of_validation_samples is not None:
num_val_examples = self.parameters.number_of_validation_samples
else:
num_val_examples = math.ceil(
len(data_list_validation) * self.parameters.validation_fraction
)
print(f"*** There are {num_val_examples} val examples to go through")
self.data_list = collections.OrderedDict(
list(data_list_validation.items())[:num_val_examples]
)
else:
self.data_list = collections.OrderedDict(data_list_validation)
elif phase == "test":
self.data_list = collections.OrderedDict(data_list_test)
self.add_metadata_to_datalist()
self.exam_list = list(self.data_list.keys())
def add_metadata_to_datalist(self):
# Adds metadata about patient age, BPE, BI-RADS to the data list
df = self.parameters.subgroup_df
for acn in self.data_list.keys():
try:
df_acn = df[df.Acc==acn]
if len(df_acn) == 1:
self.data_list[acn]['bpe'] = df_acn.bpe.values[0]
self.data_list[acn]['birads'] = df_acn.birads.values[0]
self.data_list[acn]['age'] = df_acn.AgeFix.values[0]
except Exception as why:
print(f"Failed fetching metadata for acc {acn}: {why}")
def h5_to_sitk(self, h5path):
"""
Load h5 image and return SimpleITK Image
"""
acn = os.path.dirname(h5path).split("/")[-1]
for pt_counter, (mrn, patient_metadata) in enumerate(self.metadata.items()):
studies = patient_metadata["ExamsInfo"]
for study in studies:
try:
int_acn = int(acn)
except:
int_acn = acn
if study["AccessionNumber"].strip() == acn or study["AccessionNumber"].strip() == int_acn:
series = study["SeriesInfo"]
for serie in series:
if os.path.basename(h5path) == os.path.basename(serie["ImagePath"]) \
and os.path.basename(os.path.dirname(h5path)) == os.path.basename(os.path.dirname(serie['ImagePath'])):
spacing = serie['PixelSpacing']
cosines = serie['Cosines']
# Load file
f = h5py.File(h5path, 'r')
image = f['data']
image = np.array(f['data']).astype(np.float32)
# Generate ITK image
itkimage = sitk.GetImageFromArray(image, isVector=False)
itkimage.SetSpacing(spacing)
itkimage.SetDirection(cosines)
# If requested, resample to isotropic voxels
if self.parameters.isotropic:
if itkimage.GetSpacing() == (1.0, 1.0, 1.0):
pass # already isotropic
else:
itkimage = resample_volume(
volume=itkimage,
new_spacing=[1.0, 1.0, 1.0]
)
return itkimage
def get_datum(self, index):
item_key = self.exam_list[index]
datalist = self.data_list[item_key]
if self.parameters.label_type == 'birads':
label = self.birads_dict[item_key]
label = torch.tensor(label).long()
elif self.parameters.label_type == 'bpe':
label = self.bpe_labels_dict[item_key]
label = torch.tensor(label).long()
else:
# Default - cancer label
label = torch.Tensor(datalist["label"]).long()
# Read images depending on which input is used
if self.parameters.input_type == 'random':
if self.phase == "training":
arr_input_types = ['sub_t1c1', 'sub_t1c2', 't1pre', 't1c1', 't1c2']
self.parameters.input_type = arr_input_types[torch.randint(low=0, high=len(arr_input_types), size=(1,))[0]]
affine = None # affine matrix
if self.parameters.input_type in ['sub_t1c1', 'sub_t1c2', 't1pre', 'three_channel', 'five_channel', 'random', 'multi']:
item_pre = self.h5_to_sitk(datalist["image"]["pre"], datalist)
affine = affine_from_sitk(item_pre)
if self.parameters.input_type in ['sub_t1c1', 't1c1', 'three_channel', 'five_channel', 'random', 'multi', 'MIL']:
item_post1 = self.h5_to_sitk(datalist["image"]["post1"], datalist)
if affine is None:
affine = affine_from_sitk(item_post1)
if self.parameters.input_type in ['sub_t1c2', 't1c2', 'mip_t1c2', 'three_channel', 'five_channel', 'random', 'multi']:
item_post2 = self.h5_to_sitk(datalist["image"]["post2"], datalist)
if affine is None:
affine = affine_from_sitk(item_post2)
if self.parameters.input_type in ['t2', 'MIL']:
if 't2' in datalist['image']:
item_t2 = self.h5_to_sitk(datalist["image"]["t2"], datalist)
if affine is None:
affine = affine_from_sitk(item_t2)
else:
item_t2 = None
# SimpleITK -> numpy 3D matrices -> 4D matrices
if self.parameters.input_type in ['sub_t1c1', 'sub_t1c2', 't1pre', 'three_channel', 'five_channel', 'random', 'multi']:
item_pre = np.expand_dims(sitk.GetArrayFromImage(item_pre), 0)
if self.parameters.input_type in ['sub_t1c1', 't1c1', 'three_channel', 'five_channel', 'random', 'multi', 'MIL']:
item_post1 = np.expand_dims(sitk.GetArrayFromImage(item_post1), 0)
if self.parameters.input_type in ['sub_t1c2', 't1c2', 'mip_t1c2', 'three_channel', 'five_channel', 'random', 'multi']:
item_post2 = np.expand_dims(sitk.GetArrayFromImage(item_post2), 0)
if self.parameters.input_type in ['t2', 'MIL']:
if item_t2 is not None:
item_t2 = np.expand_dims(sitk.GetArrayFromImage(item_t2), 0)
# Create torchio (tio) Image objects required for augmentations
if self.parameters.input_type in ['sub_t1c1', 'sub_t1c2', 't1pre', 'three_channel', 'five_channel', 'random', 'multi']:
tio_pre = torchio.ScalarImage(tensor=item_pre, affine=affine)
if self.parameters.input_type in ['sub_t1c1', 't1c1', 'three_channel', 'five_channel', 'random', 'multi', 'MIL']:
tio_post1 = torchio.ScalarImage(tensor=item_post1, affine=affine)
if self.parameters.input_type in ['sub_t1c2', 't1c2', 'three_channel', 'five_channel', 'random', 'multi']:
tio_post2 = torchio.ScalarImage(tensor=item_post2, affine=affine)
if self.parameters.input_type == 'mip_t1c2':
mip = np.expand_dims(np.amax(item_post2, axis=1), 0)
if self.parameters.input_type in ['t2', 'MIL']:
if item_t2 is not None:
tio_t2 = torchio.ScalarImage(tensor=item_t2, affine=affine)
# Create subject
if self.parameters.input_type == 'sub_t1c1':
subtraction = (tio_post1.data - tio_pre.data)
del tio_post1
del tio_pre
if self.parameters.subtraction_clipping:
subtraction = torch.clamp(subtraction, 0, subtraction.max())
tio_subtraction = torchio.ScalarImage(
tensor=subtraction,
affine=affine
)
subject = torchio.Subject({"sub_t1c1": tio_subtraction})
elif self.parameters.input_type == 'sub_t1c2':
subtraction = (tio_post2.data - tio_pre.data)
del tio_post2
del tio_pre
if self.parameters.subtraction_clipping:
subtraction = torch.clamp(subtraction, 0, subtraction.max())
tio_subtraction = torchio.ScalarImage(
tensor=subtraction,
affine=affine
)
subject = torchio.Subject({"sub_t1c2": tio_subtraction})
elif self.parameters.input_type == 't1c1':
subject = torchio.Subject({"post1": tio_post1})
elif self.parameters.input_type == 't1c2':
subject = torchio.Subject({"post2": tio_post2})
elif self.parameters.input_type == 't1pre':
subject = torchio.Subject({"pre": tio_pre})
elif self.parameters.input_type in ['three_channel', 'five_channel']:
subject = torchio.Subject({"pre": tio_pre, "post1": tio_post1, "post2": tio_post2})
elif self.parameters.input_type == 'mip_t1c2':
subject = torchio.ScalarImage(tensor=mip)
#print("*** Subject shape:", subject.shape)
elif self.parameters.input_type == 't2':
subject = torchio.Subject({"t2": tio_t2})
elif self.parameters.input_type in ['random', 'multi']:
subject = torchio.Subject({
"pre": tio_pre,
"post1": tio_post1,
"post2": tio_post2,
})
elif self.parameters.input_type == 'MIL':
# crop before making Subject, sizes must match
crop_or_pad = torchio.transforms.CropOrPad((190,448,448))
tio_post1 = crop_or_pad(tio_post1)
if item_t2 is not None:
tio_t2 = crop_or_pad(tio_t2)
subject = torchio.Subject({
"sub_t1c1": tio_post1,
"t2": tio_t2
})
else:
subject = torchio.Subject({"sub_t1c1": tio_post1})
# Crop/Pad
if self.parameters.input_type == 'mip_t1c2':
pass
elif self.parameters.isotropic:
transform = torchio.transforms.CropOrPad((220, 320, 320))
subject = transform(subject)
else:
if self.parameters.input_size == 'small':
transform = torchio.transforms.CropOrPad((130, 250, 350))
else:
transform = torchio.transforms.CropOrPad((190, 448, 448))
subject = transform(subject)
# Augmentations
if self.phase == "training":
if self.parameters.aug_policy == 'none':
pass
elif self.parameters.aug_policy == 'randaugment':
randaug_N = 3 # number of augmentations
randaug_M = 7 # magnitude
assert randaug_M < 10
selected_augs = []
# Magnitude ranges
randaug_dict = {
"affine_translation": np.linspace(0, 10, 10),
"blur_std": np.linspace(0, 5, 10),
"log_gamma": np.linspace(0, 0.4, 10),
"noise": {
"mean": np.linspace(0, 0.2, 10),
"std": np.linspace(0.15, 0.7, 10)
}
}
ops = random.sample(list(randaug_dict), k=randaug_N) # select N random augs
# Add the affine trassformation.
# affine scaling and rotations are applied with a constant probability
# but with different magnitudes
if "affine_translation" in ops:
affine_translation = randaug_dict['affine_translation'][randaug_M]
else:
affine_translation = 0
selected_augs.append(
torchio.transforms.RandomAffine(
scales=np.linspace(0, 0.3, 10)[randaug_M], # magnitude range for scaling
degrees=np.linspace(0, 30, 10)[randaug_M], # magnitude range for rotations
translation=affine_translation,
p=0.65 # constant probability
)
)
for o in ops:
if o == 'affine_translation':
pass # already added
elif o == 'blur_std':
selected_augs.append(
torchio.transforms.RandomBlur(std=randaug_dict['blur_std'][randaug_M])
)
elif o == 'log_gamma':
selected_augs.append(
torchio.transforms.RandomGamma(log_gamma=randaug_dict['log_gamma'][randaug_M])
)
elif o == 'noise':
selected_augs.append(
torchio.transforms.RandomNoise(
mean=randaug_dict['noise']['mean'][randaug_M],
std=randaug_dict['noise']['std'][randaug_M]
)
)
augmenter = torchio.transforms.Compose(selected_augs)
subject = augmenter(subject)
else:
is_horizontal_flip = random.choice([0.0, 1.0])
if self.parameters.aug_policy == 'affine':
# affine + LR flip
augmenter = torchio.transforms.Compose([
torchio.transforms.RandomFlip(axes=2, flip_probability=is_horizontal_flip),
torchio.transforms.RandomAffine(
scales=self.parameters.affine_scale,
degrees=self.parameters.affine_rotation_deg,
translation=self.parameters.affine_translation,
p=0.65
)
])
elif self.parameters.aug_policy == 'policy1':
augmenter = torchio.transforms.Compose([
torchio.transforms.RandomFlip(axes=2, flip_probability=is_horizontal_flip),
torchio.transforms.RandomAffine(scales=(0.95,1.05), degrees=5, p=0.50),
torchio.OneOf({
torchio.transforms.RandomBlur(): 0.5,
torchio.transforms.RandomNoise(): 0.5
}, p=0.5),
torchio.OneOf({
torchio.transforms.RandomMotion(): 0.20,
torchio.transforms.RandomGhosting(): 0.40,
torchio.transforms.RandomSpike(): 0.40
}, p=0.5)
])
elif self.parameters.aug_policy == 'motion':
augmenter = torchio.transforms.Compose([
torchio.transforms.RandomFlip(axes=2, flip_probability=is_horizontal_flip),
torchio.transforms.RandomAffine(scales=(0.90,1.10), p=0.65),
torchio.transforms.RandomMotion(p=0.5)
])
elif self.parameters.aug_policy == 'ghosting':
augmenter = torchio.transforms.Compose([
torchio.transforms.RandomFlip(axes=2, flip_probability=is_horizontal_flip),
torchio.transforms.RandomAffine(scales=(0.90,1.10), p=0.65),
torchio.transforms.RandomGhosting(p=0.5)
])
elif self.parameters.aug_policy == 'spike':
augmenter = torchio.transforms.Compose([
torchio.transforms.RandomFlip(axes=2, flip_probability=is_horizontal_flip),
torchio.transforms.RandomAffine(scales=(0.90,1.10), p=0.65),
torchio.transforms.RandomSpike(p=0.5)
])
else:
raise ValueError(f"Unknown type of augmentation policy {self.parameters.aug_policy}")
if is_horizontal_flip == 1.0 and self.parameters.label_type == 'cancer':
# Flip labels to match sides after horizontal flip
label_old = label.clone()
label[0] = label_old[2] #right benign
label[1] = label_old[3] #right malignant
label[2] = label_old[0] #left benign
label[3] = label_old[1] #left malignant
subject = augmenter(subject)
#print("*** After augmentation:", subject.shape)
# Get final volume, perform subtraction if applicable
if self.parameters.input_type == 'sub_t1c1':
input_volume = subject['sub_t1c1'].data
elif self.parameters.input_type == 'sub_t1c2':
input_volume = subject['sub_t1c2'].data
elif self.parameters.input_type == 't1c1':
input_volume = subject["post1"].data
elif self.parameters.input_type == 't1c2':
input_volume = subject["post2"].data
elif self.parameters.input_type == 't1pre':
input_volume = subject["pre"].data
elif self.parameters.input_type == 't2':
input_volume = subject["t2"].data
elif self.parameters.input_type == 'three_channel':
if self.parameters.age_as_channel:
input_volume = torch.stack([
subject['pre'].data,
subject['post1'].data,
subject['post2'].data,
torch.empty_like(subject['pre'].data).fill_(datalist['age'])
]).squeeze()
else:
input_volume = torch.stack([
subject['pre'].data,
subject['post1'].data,
subject['post2'].data
]).squeeze()
elif self.parameters.input_type == 'five_channel':
subtraction1 = subject['post1'].data - subject['pre'].data
subtraction2 = subject['post2'].data - subject['pre'].data
input_volume = torch.stack([
subject['pre'].data,
subject['post1'].data,
subject['post2'].data,
subtraction1,
subtraction2
]).squeeze()
elif self.parameters.input_type == 'mip_t1c2':
input_volume = torch.squeeze(subject.data)
if torch.isnan(input_volume).any():
raise ValueError("Nan in input volume")
t = torchvision.transforms.Compose([
torchvision.transforms.ToPILImage(),
torchvision.transforms.RandomCrop(size=(448, 448), pad_if_needed=True),
torchvision.transforms.ToTensor()
])
input_volume = t(input_volume)
#print("*** after crop: ", input_volume.shape)
elif self.parameters.input_type in ['random', 'multi']:
subtraction1 = (subject['post1'].data - subject['pre'].data)
subtraction2 = (subject['post2'].data - subject['pre'].data)
input_volume = torch.stack([
subject['pre'].data,
subject['post2'].data,
subtraction1,
]).squeeze().unsqueeze(1)
elif self.parameters.input_type == 'MIL':
if item_t2 is not None:
input_volume = torch.stack([
subject['sub_t1c1'].data,
subject['t2'].data
]).squeeze()
else:
input_volume = subject['sub_t1c1'].data
input_volume = input_volume.float() # Necessary for mean/std calculation
# Cutout
if self.parameters.cutout and self.phase == 'training':
cutout = Cutout3D(
p=1.0,
fill='mean',
cutout_percentage_z=self.parameters.cutout_percentage,
cutout_percentage_x=self.parameters.cutout_percentage,
cutout_percentage_y=self.parameters.cutout_percentage
)
input_volume = cutout(input_volume)
# Z-normalize
mean, std = input_volume.mean(), input_volume.std()
input_volume -= mean
input_volume /= std
# Rescale to 0,1
input_volume -= input_volume.min()
input_volume /= input_volume.max()
if self.parameters.input_type == 'mip_t1c2':
input_volume = torch.squeeze(input_volume).unsqueeze(0).repeat(3,1,1)
else:
input_volume = torch.squeeze(input_volume)#.float() # from (1,z,x,y) to (z,x,y)
return item_key, input_volume, label
def __getitem__(self, index):
item_key, input_volume, label = self.get_datum(index)
mixed_label = 0 # label for mixup
if self.parameters.mixup and self.phase == 'training':
rand_index = randrange(len(self.data_list))
item_key2, input_volume2, label2 = self.get_datum(rand_index)
ratio = 0.5
mixed_volume = (ratio * input_volume) + ((1-ratio) * input_volume2)
mixed_label = torch.stack([label, label2])
input_volume = mixed_volume
return item_key, input_volume, label, mixed_label
def __len__(self):
return len(self.data_list)
def get_labels(self):
number_of_examples = len(self.data_list)
labels = dict()
for i in range(0, number_of_examples):
item_key = self.exam_list[i]
if self.parameters.label_type == 'birads':
labels[item_key] = self.birads_dict[item_key]
elif self.parameters.label_type == 'bpe':
labels[item_key] = self.bpe_labels_dict[item_key]
else:
labels[item_key] = self.data_list[item_key]["label"]
return labels
def affine_from_sitk(image: sitk.Image):
"""
Generate affine matrix from SimpleITK Image object
"""
FLIP_XY = np.diag((-1, -1, 1))
spacing = np.array(image.GetSpacing())
direction = np.array(image.GetDirection())
origin = image.GetOrigin()
if len(direction) == 9:
rotation = direction.reshape(3, 3)
elif len(direction) == 4: # ignore first dimension if 2D (1, W, H, 1)
rotation_2d = direction.reshape(2, 2)
rotation = np.eye(3)
rotation[:2, :2] = rotation_2d
spacing = *spacing, 1
origin = *origin, 0
else:
raise RuntimeError(f'Direction not understood: {direction}')
rotation = np.dot(FLIP_XY, rotation)
rotation_zoom = rotation * spacing
translation = np.dot(FLIP_XY, origin)
affine = np.eye(4)
affine[:3, :3] = rotation_zoom
affine[:3, 3] = translation
return affine
class Cutout3D(object):
"""A class that makes a 3D (cuboid) cutout in the given image
an extension of the original 2d cutout as described in:
https://arxiv.org/pdf/1708.04552.pdf
"""
def __init__(self,
p=1.0,
cutout_percentage_z = 0.4,
cutout_percentage_x = 0.4,
cutout_percentage_y = 0.4,
fill='mean'):
""" Construct cutout object
:param p: Probability that the cutout will be applied
:param cutout_percentage_z: How much of the input image (percentage-wise)
can be cut out in the Z axis (first dimension)
Has to be in a range (0, 1), which represents (0%, 100%)
:param cutout_percentage_x: How much of the input image (percentage-wise)
can be cut out in the x axis (second dimension)
:param cutout_percentage_y: How much of the input image (percentage-wise)
can be cut out in the y axis (third dimension)
:param fill: What value will be assigned to the cutout block. Options:
minimum - fill the block with minimum value of the volume
zero - fill the block with zeros
mean - fill the block with the mean value of given volume
max - fill the block with maximum value of given volume
"""
self.p = p
self.cutout_percentage_z = cutout_percentage_z
self.cutout_percentage_x = cutout_percentage_x
self.cutout_percentage_y = cutout_percentage_y
assert fill in ['minimum', 'zero', 'mean', 'max']
self.fill = fill
def __call__(self, volume):
""" Apply cutout
:param volume: Volume to apply cutout to
Expects to have shape of (1, Z, X, Y)
"""
# Expects volume of size (1,Z,X,Y)
assert volume.ndim == 4, f"Input expected to be (1,Z,X,Y), instead received {volume.ndim} dimensions"
if random.random() > self.p:
return volume
# calculate cutout size from percentages
cutout_size_z = round(volume.shape[1] * self.cutout_percentage_z)
cutout_size_x = round(volume.shape[2] * self.cutout_percentage_x)
cutout_size_y = round(volume.shape[3] * self.cutout_percentage_y)
# center point of cutout block
middle_z = random.randint(0, volume.shape[1])
middle_x = random.randint(0, volume.shape[2])
middle_y = random.randint(0, volume.shape[3])
# boundaries of cutout block
start_z = np.maximum(0, middle_z - cutout_size_z // 2)
end_z = np.minimum(volume.shape[1], middle_z + cutout_size_z // 2)
start_x = np.maximum(0, middle_x - cutout_size_x // 2)
end_x = np.minimum(volume.shape[2], middle_x + cutout_size_x // 2)
start_y = np.maximum(0, middle_y - cutout_size_y // 2)
end_y = np.minimum(volume.shape[3], middle_y + cutout_size_y // 2)
# Fill:
if self.fill == 'minimum':
volume[:, start_z:end_z, start_x:end_x, start_y:end_y] = volume.min()
elif self.fill == 'zero':
volume[:, start_z:end_z, start_x:end_x, start_y:end_y] = 0
elif self.fill == 'mean':
volume[:, start_z:end_z, start_x:end_x, start_y:end_y] = volume.mean()
elif self.fill == 'max':
print("Volume max:", volume.max())
volume[:, start_z:end_z, start_x:end_x, start_y:end_y] = volume.max()
return volume