-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgui.py
992 lines (950 loc) · 44 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#!/usr/bin/env python
from __future__ import print_function
import numpy as np
from mpi4py import MPI
from pathlib import Path, PurePath
from time import time, sleep
import multiprocessing
import os
import argparse
import gc
import scipy
import signal
import unicsv
from scipy.signal import butter, lfilter, freqz, correlate2d
import glob
import essentia
import essentia.standard as es
import essentia.streaming as ess
from essentia.standard import *
import time as time
import datetime
import sys
# insert at 1, 0 is the script path (or '' in REPL)
#sys.path.insert(1, '/home/bqpd/Desktop/MusicSimilarity-UI/rp_extract')
from audiofile_read import * # reading wav and mp3 files
from rp_feature_io import CSVFeatureWriter, HDF5FeatureWriter, read_csv_features, load_multiple_hdf5_feature_files
import rp_extract as rp # Rhythm Pattern extractor
from PyQt5.QtWidgets import QMainWindow, QApplication, QFileDialog
from PyQt5 import uic
import sys
fs = 44100
octave = ['A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#']
np.set_printoptions(threshold=np.inf)
gc.enable()
filelist = []
for filename in Path('music').glob('**/*.mp3'):
filelist.append(filename)
for filename in Path('music').glob('**/*.wav'):
filelist.append(filename)
print("length of filelist" + str(len(filelist)))
# Initializations and preliminaries
comm = MPI.COMM_WORLD # get MPI communicator object
size = comm.size # total number of processes
rank = comm.rank # rank of this process
status = MPI.Status() # get MPI status object
do_mfcc_kl = 1
do_mfcc_euclid = 1
do_notes = 1
do_chroma = 1
do_bh = 1
startbatch = 0
endbatch = 1000000
batchsize = 25
#TestApp().run()
# Python 3 compatibility hack
try:
unicode('')
except NameError:
unicode = str
form_class = uic.loadUiType("ms.ui")[0] # Load the UI
class MyWindowClass(QMainWindow, form_class):
def __init__(self, parent=None):
QMainWindow.__init__(self, parent)
self.setupUi(self)
def extrbutton_clicked(self):
options = QFileDialog.Options()
fileName = QFileDialog.getExistingDirectory(self,"Select folder containing music", "", options=options)
if fileName:
print("Selected Folder" + fileName)
filelist = []
for filename in Path(str(fileName)).glob('**/*.mp3'):
filelist.append(filename)
for filename in Path(str(fileName)).glob('**/*.wav'):
filelist.append(filename)
print("length of filelist" + str(len(filelist)))
extract_all_rhythm_feats(fileName)
print("Extracting Rhythm Features")
extract_all_rhythm_feats(fileName)
print("Extracting Melodic Features")
time_dict = {}
tic1 = int(round(time.time() * 1000))
# BATCH FEATURE EXTRACTION:
process_stuff(startbatch, endbatch, batchsize, do_mfcc_kl, do_mfcc_euclid, do_notes, do_chroma, do_bh)
tac1 = int(round(time.time() * 1000))
time_dict['MPI TIME FEATURE']= tac1 - tic1
#if rank == 0:
print("Process " + str(rank) + " time: " + str(time_dict))
def loadbutton_clicked(self):
options = QFileDialog.Options()
fileName = QFileDialog.getExistingDirectory(self,"Select folder containing feature files", "","All Files (*)", options=options)
if fileName:
print(fileName)
def selectbutton_clicked(self):
options = QFileDialog.Options()
fileName, _ = QFileDialog.getOpenFileName(self,"Select a song", "","All Files (*)", options=options)
if fileName:
print(fileName)
def parallel_python_process(process_id, cpu_filelist, f_mfcc_kl, f_mfcc_euclid, f_notes, f_chroma, f_bh):
#return (end_time - start_time)
#PARAMETER: mfcc_kl, mfcc_euclid, notes, chroma, bh
if f_mfcc_euclid == 1:
with open("features1/out" + str(process_id) + ".mfcc", "w") as myfile:
myfile.write("")
myfile.close()
if f_mfcc_kl == 1:
with open("features1/out" + str(process_id) + ".mfcckl", "w") as myfile:
myfile.write("")
myfile.close()
if f_chroma == 1:
with open("features1/out" + str(process_id) + ".chroma", "w") as myfile:
myfile.write("")
myfile.close()
if f_bh == 1:
with open("features1/out" + str(process_id) + ".bh", "w") as myfile:
myfile.write("")
myfile.close()
if f_notes == 1:
with open("features1/out" + str(process_id) + ".notes", "w") as myfile:
myfile.write("")
myfile.close()
count = 1
for file_name in cpu_filelist:
path = str(PurePath(file_name))
print ("File " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
bpmret, hist, key, scale, notes, chroma_matrix, mean, cov, var, cov_kl = compute_features(path, f_mfcc_kl, f_mfcc_euclid, f_notes, f_chroma, f_bh)
if key == 0:
continue
filename = path.replace(".","").replace(";","").replace(",","").replace("mp3",".mp3").replace("aiff",".aiff").replace("aif",".aif").replace("au",".au").replace("m4a", ".m4a").replace("wav",".wav").replace("flac",".flac").replace("ogg",".ogg") # rel. filename as from find_files
if f_mfcc_euclid == 1:
with open("features1/out" + str(process_id) + ".mfcc", "a") as myfile:
print ("MFCC File " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
str_mean = np.array2string(mean, precision=8, separator=',', suppress_small=True).replace('\n', '')#.strip('[ ]')
str_var = np.array2string(var, precision=8, separator=',', suppress_small=True).replace('\n', '')#.strip('[ ]')
str_cov = np.array2string(cov, precision=8, separator=',', suppress_small=True).replace('\n', '')#.strip('[ ]')
line = (filename + "; " + str_mean + "; " + str_var + "; " + str_cov).replace('\n', '')
myfile.write(line + '\n')
myfile.close()
if f_chroma == 1:
with open("features1/out" + str(process_id) + ".chroma", "a") as myfile:
print ("Chroma Full - File " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
transposed_chroma = np.zeros(chroma_matrix.shape)
transposed_chroma = transpose_chroma_matrix(key, scale, chroma_matrix)
chroma_str = np.array2string(transposed_chroma.transpose(), separator=',', suppress_small=True).replace('\n', '')
line = (filename + "; " + chroma_str).replace('\n', '')
myfile.write(line + '\n')
myfile.close()
if f_bh == 1:
with open("features1/out" + str(process_id) + ".bh", "a") as myfile:
print ("Beat Histogram - File " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
bpmret = str(bpmret)
hist = np.array2string(hist, separator=',', suppress_small=True).replace('\n', '')
line = (filename + "; " + bpmret + "; " + hist).replace('\n', '')
myfile.write(line + '\n')
myfile.close()
if f_notes == 1:
with open("features1/out" + str(process_id) + ".notes", "a") as myfile:
print ("Chroma Notes - File " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
key = str(key)
transposed_notes = []
transposed_notes = transpose_chroma_notes(key, scale, notes)
#print notes
scale = str(scale).replace('\n', '')
transposed_notes = str(transposed_notes).replace('\n', '')
line = (filename + "; " + key + "; " + scale + "; " + transposed_notes).replace('\n', '')
myfile.write(line + '\n')
myfile.close()
if f_mfcc_kl == 1:
with open("features1/out" + str(process_id) + ".mfcckl", "a") as myfile:
print ("MFCC Kullback-Leibler " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
str_mean = np.array2string(mean, precision=8, separator=',', suppress_small=True).replace('\n', '')#.strip('[ ]')
str_cov_kl = np.array2string(cov_kl, precision=8, separator=',', suppress_small=True).replace('\n', '')#.strip('[ ]')
line = (filename + "; " + str_mean + "; " + str_cov_kl).replace('\n', '')
myfile.write(line + '\n')
myfile.close()
count = count + 1
del bpmret, hist, key, scale, notes, chroma_matrix, mean, cov, var, cov_kl
gc.enable()
gc.collect()
gc.enable()
gc.collect()
return 1
def parallel_python_process_files(process_id, cpu_filelist):
print("calling rank " + str(rank) + " size " + str(size))
count = 1
for file_name in cpu_filelist:
path = str(PurePath(file_name))
filename = path.replace(".","").replace(";","").replace(",","").replace("mp3",".mp3").replace("aiff",".aiff").replace("aif",".aif").replace("au",".au").replace("m4a", ".m4a").replace("wav",".wav").replace("flac",".flac").replace("ogg",".ogg") # rel. filename as from find_files
with open("features1/out" + str(process_id) + ".files", "a") as myfile:
#print ("File " + path + " " + str(count) + " von " + str(len(cpu_filelist)))
line = (filename + " : " + str(process_id))
myfile.write(line + '\n')
myfile.close()
count = count + 1
gc.enable()
gc.collect()
gc.enable()
gc.collect()
return 1
def process_stuff(startjob, maxparts, batchsz, f_mfcc_kl, f_mfcc_euclid, f_notes, f_chroma, f_bh):
startjob = int(startjob)
maxparts = int(maxparts) + 1
files_per_part = int(batchsz)
print("starting with: ")
print(startjob)
print("ending with: ")
print(maxparts - 1)
# Divide the task into subtasks - such that each subtask processes around 25 songs
print("files per part: ")
print(files_per_part)
start = 0
end = len(filelist)
print("used cores: " + str(size))
ncpus = size
parts = int(round(len(filelist) / files_per_part) + 1)
print("Split problem in parts: ")
print(str(parts))
step = int((end - start) / parts + 1)
if maxparts > parts:
maxparts = parts
for index in range(startjob + rank, maxparts, size):
if index < parts:
starti = start+index*step
endi = min(start+(index+1)*step, end)
print("calling process " + str(rank) + " index " + str(index) + " size " + str(size) + " starti " + str(starti) + " endi " + str(endi))
parallel_python_process(index, filelist[int(starti):int(endi)], f_mfcc_kl, f_mfcc_euclid, f_notes, f_chroma, f_bh)
with open("features1/out" + str(index) + ".files", "w") as myfile:
myfile.write("")
myfile.close()
parallel_python_process_files(index, filelist[starti:endi])
gc.collect()
gc.enable()
gc.collect()
def transpose_chroma_matrix(key, scale, chroma_param):
if key == 'Ab':
key = 'G#'
if key == 'Gb':
key = 'F#'
if key == 'Eb':
key = 'D#'
if key == 'Db':
key = 'C#'
if key == 'Bb':
key = 'A#'
chroma_param = chroma_param.transpose()
transposed_chroma = np.zeros(chroma_param.shape)
if key != 'A':
#print("transposing: ")
#get key offset
offs = 12 - octave.index(key)
#print(offs)
for ind in range(len(chroma_param)):
#print "original" + str(ind)
index = (ind + offs)
if(index >= 12):
index = index - 12
#print "new" + str(index)
transposed_chroma[index] = chroma_param[ind]
else:
transposed_chroma = chroma_param
transposed_chroma = transposed_chroma.transpose()
#print transposed_chroma[0:4]
return transposed_chroma
def transpose_chroma_notes(key, scale, notes):
if key == 'Ab':
key = 'G#'
if key == 'Gb':
key = 'F#'
if key == 'Eb':
key = 'D#'
if key == 'Db':
key = 'C#'
if key == 'Bb':
key = 'A#'
transposed = notes
if key != 'A':
#print("transposing: ")
#get key offset
offs = 12 - octave.index(key)
#print(offs)
index = 0
for i in notes:
i = i + offs
if(i >= 12):
i = i - 12
transposed[index] = i
index = index + 1
return transposed
def compute_features(path, f_mfcc_kl, f_mfcc_euclid, f_notes, f_chroma, f_bh):
gc.enable()
# Loading audio file
#will resample if sampleRate is different!
try:
audio = es.MonoLoader(filename=path, sampleRate=fs)()
except:
print("Erroneos File detected by essentia standard: skipping!")
#return bpm, histogram, key, scale, notes, chroma_matrix, mean, cov, var, cov_kl
return 0, [], 0, 0, [], [], [], [], [], []
#will resample if sampleRate is different!
try:
loader = ess.MonoLoader(filename=path, sampleRate=44100)
except:
print("Erroneos File detected by essentia streaming: skipping!")
#return bpm, histogram, key, scale, notes, chroma_matrix, mean, cov, var, cov_kl
return 0, [], 0, 0, [], [], [], [], [], []
#Initialize algorithms we will use
frameSize = 4096#512
hopSize = 2048#256
#######################################
# DO FILTERING ONLY FOR MFCC - not with essentia standard
# below is just an example
#HP = es.HighPass(cutoffFrequency=128)
#LP = es.LowPass(cutoffFrequency=4096)
#lp_f = LP(audio)
#hp_f = HP(lp_f)
#audio = hp_f
#MonoWriter(filename='music/filtered.wav')(filtered_audio)
HP = ess.HighPass(cutoffFrequency=128)
LP = ess.LowPass(cutoffFrequency=4096)
#loader = ess.MonoLoader(filename=path, sampleRate=44100)
#writer = ess.MonoWriter(filename='music/filtered.wav')
#frameCutter = FrameCutter(frameSize = 1024, hopSize = 512)
#pool = essentia.Pool()
# Connect streaming algorithms
#loader.audio >> HP.signal
#HP.signal >> LP.signal
#LP.signal >> writer.audio
# Run streaming network
#essentia.run(loader)
bpm = 0
histogram = 0
key = 0
scale = 0
notes = 0
chroma_matrix = 0
mean = 0
cov = 0
var = 0
cov_kl = 0
#####################################
# extract mfcc
#####################################
if f_mfcc_kl == 1 or f_mfcc_euclid == 1:
#features, features_frames = es.MusicExtractor(analysisSampleRate=44100, mfccStats=['mean', 'cov'])(path)
#m, n = features['lowlevel.mfcc.cov'].shape
#print m
#iu1 = np.triu_indices(m)
#cov = features['lowlevel.mfcc.cov'][iu1]
#mean = features['lowlevel.mfcc.mean']
#print(features['lowlevel.mfcc.cov'])
hamming_window = es.Windowing(type='hamming')
spectrum = es.Spectrum() # we just want the magnitude spectrum
mfcc = es.MFCC(numberCoefficients=13)
frame_sz = 2048#512
hop_sz = 1024#256
mfccs = np.array([mfcc(spectrum(hamming_window(frame)))[1]
for frame in es.FrameGenerator(audio, frameSize=frame_sz, hopSize=hop_sz)])
#Let's scale the MFCCs such that each coefficient dimension has zero mean and unit variance:
#mfccs = sklearn.preprocessing.scale(mfccs)
#print mfccs.shape
mean = np.mean(mfccs.T, axis=1)
#print(mean)
var = np.var(mfccs.T, axis=1)
#print(var)
cov = np.cov(mfccs.T)
cov_kl = cov#.flatten()
#get only upper triangular matrix values to shorten length
iu1 = np.triu_indices(13)
cov = cov[iu1]
#plt.imshow(mfccs.T, origin='lower', aspect='auto', interpolation='nearest')
#plt.ylabel('MFCC Coefficient Index')
#plt.xlabel('Frame Index')
#plt.colorbar()
#####################################
# extract beat features and histogram
#####################################
if f_bh == 1 or f_chroma == 1 or f_notes == 1:
# Compute beat positions and BPM
rhythm_extractor = es.RhythmExtractor2013(method="multifeature")
bpm, beats, beats_confidence, _, beats_intervals = rhythm_extractor(audio)
if f_bh == 1:
peak1_bpm, peak1_weight, peak1_spread, peak2_bpm, peak2_weight, peak2_spread, histogram = es.BpmHistogramDescriptors()(beats_intervals)
tempo = bpm
times = beats
beats_frames = (beats * fs) / hopSize
beats_frames = beats_frames.astype(int)
#fig, ax = plt.subplots()
#ax.bar(range(len(histogram)), histogram, width=1)
#ax.set_xlabel('BPM')
#ax.set_ylabel('Frequency')
#plt.title("BPM histogram")
#ax.set_xticks([20 * x + 0.5 for x in range(int(len(histogram) / 20))])
#ax.set_xticklabels([str(20 * x) for x in range(int(len(histogram) / 20))])
#plt.show()
#####################################
# extract full beat aligned chroma
#####################################
framecutter = ess.FrameCutter(frameSize=frameSize, hopSize=hopSize, silentFrames='noise')
windowing = ess.Windowing(type='blackmanharris62')
spectrum = ess.Spectrum()
spectralpeaks = ess.SpectralPeaks(orderBy='magnitude',
magnitudeThreshold=0.00001,
minFrequency=20,
maxFrequency=3500,
maxPeaks=60)
# Use default HPCP parameters for plots, however we will need higher resolution
# and custom parameters for better Key estimation
hpcp = ess.HPCP()
hpcp_key = ess.HPCP(size=36, # we will need higher resolution for Key estimation
referenceFrequency=440, # assume tuning frequency is 44100.
bandPreset=False,
minFrequency=20,
maxFrequency=3500,
weightType='cosine',
nonLinear=False,
windowSize=1.)
key = ess.Key(profileType='edma', # Use profile for electronic music
numHarmonics=4,
pcpSize=36,
slope=0.6,
usePolyphony=True,
useThreeChords=True)
# Use pool to store data
pool = essentia.Pool()
# Connect streaming algorithms
###################################
# USE FILTER - comment next lines in
loader.audio >> HP.signal
HP.signal >> LP.signal
LP.signal >> framecutter.signal
###################################
###################################
# NO FILTER - comment next line in
#loader.audio >> framecutter.signal
###################################
framecutter.frame >> windowing.frame >> spectrum.frame
spectrum.spectrum >> spectralpeaks.spectrum
spectralpeaks.magnitudes >> hpcp.magnitudes
spectralpeaks.frequencies >> hpcp.frequencies
spectralpeaks.magnitudes >> hpcp_key.magnitudes
spectralpeaks.frequencies >> hpcp_key.frequencies
hpcp_key.hpcp >> key.pcp
hpcp.hpcp >> (pool, 'tonal.hpcp')
key.key >> (pool, 'tonal.key_key')
key.scale >> (pool, 'tonal.key_scale')
key.strength >> (pool, 'tonal.key_strength')
# Run streaming network
essentia.run(loader)
#print("Estimated key and scale:", pool['tonal.key_key'] + " " + pool['tonal.key_scale'])
#print(pool['tonal.hpcp'].T)
chroma = pool['tonal.hpcp'].T
key = pool['tonal.key_key']
scale = pool['tonal.key_scale']
if f_chroma == 1:
# Plot HPCP
#imshow(pool['tonal.hpcp'].T, aspect='auto', origin='lower', interpolation='none')
#plt.title("HPCPs in frames (the 0-th HPCP coefficient corresponds to A)")
#show()
#print beats_frames.shape[0]
chroma_matrix = np.zeros((beats_frames.shape[0], 12))
prev_beat = 0
act_beat = 0
sum_key = np.zeros(12)
chroma_align = chroma
chroma_align = chroma_align.transpose()
mat_index = 0
for i in beats_frames:
act_beat = i
value = sum(chroma_align[prev_beat:act_beat])/(act_beat-prev_beat)
chroma_align[prev_beat:act_beat] = value
prev_beat = i
if np.linalg.norm(value, ord=1) != 0:
value = value / np.linalg.norm(value, ord=1)
chroma_matrix[mat_index] = value
mat_index = mat_index + 1
#chroma_align = chroma_align.transpose()
#plt.figure(figsize=(10, 4))
#librosa.display.specshow(chroma_align, y_axis='chroma', x_axis='time')
#plt.vlines(times, 0, 12, alpha=0.5, color='r', linestyle='--', label='Beats')
#plt.colorbar()
#plt.title('Chromagram')
#plt.tight_layout()
#chroma_align = chroma_align.transpose()
#print(chroma_align[24:28])
#####################################
# extract full chroma text
#####################################
if f_notes == 1:
#print(chroma.shape)
m, n = chroma.shape
avg = 0
chroma = chroma.transpose()
m, n = chroma.shape
for j in chroma:
avg = avg + np.sum(j)
avg = avg / m
threshold = avg / 2
for i in chroma:
if np.sum(i) > threshold:
ind = np.where(i == np.max(i))
max_val = i[ind]#is always 1!
i[ind] = 0
ind2 = np.where(i == np.max(i))
i[ind] = 1
#if np.any(i[ind2][0] >= 0.8 * max_val):
#i[ind2] = i[ind2]
#pass
#low_values_flags = i < 1
low_values_flags = i < 0.8
i[low_values_flags] = 0
else:
i.fill(0)
chroma = chroma.transpose()
# Compute beat positions and BPM
prev_beat = 0
act_beat = 0
sum_key = np.zeros(12)
chroma = chroma.transpose()
for i in beats_frames:
act_beat = i
sum_key = sum(chroma[prev_beat:act_beat])
#print(sum_key)
#print(chroma[prev_beat:act_beat])
ind = np.where(sum_key == np.max(sum_key))
ind = ind[0]
#print("debug")
fill = np.zeros(len(j))
if(np.all(chroma[prev_beat:act_beat] == 0)):
fill[ind] = 0
else:
fill[ind] = 1
chroma[prev_beat:act_beat] = fill
#print(chroma[prev_beat:act_beat])
prev_beat = i
#print("BEAT")
notes = []
for i in notes:
del i
prev_beat = 0
act_beat = 0
for i in beats_frames:
act_beat = i
sum_key = sum(chroma[prev_beat:act_beat])
ind = np.where(sum_key == np.max(sum_key))
prev_beat = i
notes.append(ind[0][0])
prev_beat = i
#chroma = chroma.transpose()
#plt.figure(figsize=(10, 4))
#librosa.display.specshow(chroma, y_axis='chroma', x_axis='time')
#plt.vlines(times, 0, 12, alpha=0.5, color='r', linestyle='--', label='Beats')
#plt.colorbar()
#plt.title('Chromagram')
#plt.tight_layout()
#chroma = chroma.transpose()
gc.collect()
return bpm, histogram, key, scale, notes, chroma_matrix, mean, cov, var, cov_kl
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def read_feature_files(filenamestub,ext,separate_ids=True,id_column=0):
from rp_feature_io import read_csv_features
return read_csv_features(filenamestub,ext,separate_ids,id_column)
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def timestr(seconds):
''' returns HH:MM:ss formatted time string for given seconds
(seconds can be a float with milliseconds included, but only the integer part will be used)
:return: string
'''
if seconds is None:
return "--:--:--"
else:
return str(datetime.timedelta(seconds=int(seconds)))
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def find_files(path,file_types=('.wav','.mp3'),relative_path = False,verbose=False,ignore_hidden=True):
''' function to find all files of a particular file type in a given path
path: input path to start searching
file_types: a tuple of file extensions (e.g.'.wav','.mp3') (case-insensitive) or 'None' in which case ALL files in path will be returned
relative_path: if False, absolute paths will be returned, otherwise the path relative to the given path
verbose: will print info about files found in path if True
ignore_hidden: if True (default) will ignore Linux hidden files (starting with '.')
'''
if path.endswith(os.sep):
path = path[0:-1] # we need to remove the file separator at the end otherwise the path handling below gets confused
# lower case the file types for comparison
if file_types: # if we have file_types (otherwise 'None')
if type(file_types) == tuple:
file_types = tuple((f.lower() for f in file_types))
file_type_string = ' or '.join(file_types) # for print message only
else: # single string
file_types = file_types.lower()
file_type_string = file_types # for print message only
else:
file_type_string = 'any file type' # for print message only
all_files = []
for d in os.walk(unicode(path)): # finds all subdirectories and gets a list of files therein
# subpath: complete sub directory path (full path)
# filelist: files in that sub path (filenames only)
(subpath, _, filelist) = d
if ignore_hidden:
filelist = [ file for file in filelist if not file[0] == '.']
if file_types: # FILTER FILE LIST by FILE TYPE
filelist = [ file for file in filelist if file.lower().endswith(file_types) ]
if (verbose): print(subpath,":", len(filelist), "files found (" + file_type_string + ")")
# add full absolute path
filelist = [ subpath + os.sep + file for file in filelist ]
if relative_path: # cut away full path at the beginning (+/- 1 character depending if path ends with path separator)
filelist = [ filename[len(path)+1:] for filename in filelist ]
all_files.extend(filelist)
return all_files
# mp3_to_wav_batch:
# finds all MP3s in a given directory in all subdirectories
# and converts all of them to WAV
# if outdir is specified it will replicate the entire subdir structure from within input path to outdir
# otherwise the WAV file will be created in the same dir as the MP3 file
# in both cases the file name is maintained and the extension changed to .wav
# Example for MP3 to WAV batch conversion (in a new Python script):
# from rp_extract_batch import mp3_to_wav_batch
# mp3_to_wav_batch('/data/music/ISMIRgenre/mp3_44khz_128kbit_stereo','/data/music/ISMIRgenre/wav')
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def mp3_to_wav_batch(path,outdir=None,audiofile_types=('.mp3','.aif','.aiff')):
get_relative_path = (outdir!=None) # if outdir is specified we need relative path otherwise absolute
filenames = find_files(path,audiofile_types,get_relative_path)
n_files = len(filenames)
n = 0
for file in filenames:
n += 1
basename, ext = os.path.splitext(file)
wav_file = basename + '.wav'
if outdir: # if outdir is specified we add it in front of the relative file path
file = path + os.sep + file
wav_file = outdir + os.sep + wav_file
# recreate same subdir path structure as in input path
out_subpath = os.path.split(wav_file)[0]
if not os.path.exists(out_subpath):
os.makedirs(out_subpath)
# future option: (to avoid recreating the input path subdir structure in outdir)
#filename_only = os.path.split(wav_file)[1]
try:
if not os.path.exists(wav_file):
print("Decoding:", n, "/", n_files, ":")
if ext.lower() == '.mp3':
mp3_decode(file,wav_file)
elif ext.lower() == '.aif' or ext.lower() == '.aiff':
cmd = ['ffmpeg','-v','1','-y','-i', file, wav_file]
return_code = subprocess.call(cmd) # subprocess.call takes a list of command + arguments
if return_code != 0:
raise DecoderException("Problem appeared during decoding.", command=cmd)
else:
print("Already existing: " + wav_file)
except:
print("Not decoded " + file)
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def extract_all_files_in_path(in_path,
out_file = None,
feature_types = ['rp','ssd','rh'],
audiofile_types=('.wav','.mp3'),
label=False,
verbose=True):
"""
finds all files of a certain type (e.g. .wav and/or .mp3) in a path and all sub-directories in it
extracts selected RP feature types
and saves them into separate CSV feature files (one per feature type)
# path: input file path to search for audio files (including subdirectories)
# out_file: output file name stub for feature files to write (if omitted, features will be returned from function)
# feature_types: RP feature types to extract. see rp_extract.py
# audiofile_types: a string or tuple of suffixes to look for file extensions to consider (include the .)
# label: use subdirectory name as class label
"""
# get file list of all files in a path (filtered by audiofile_types)
filelist = find_files(in_path,audiofile_types,relative_path=True)
return extract_all_files(filelist, in_path, out_file, feature_types, label, verbose)
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def extract_all_files_generic(in_path,
out_file = None,
feature_types = ['rp','ssd','rh'],
audiofile_types=('.wav','.mp3'),
path_prefix=None,
label=False,
append=False,
append_diff=False,
no_extension_check=False,
force_resampling=None,
out_HDF5 = False,
log_AudioTypes = True,
log_Errors = True,
verbose=True):
"""
finds all files of a certain type (e.g. .wav and/or .mp3) in a path (+ sub-directories)
OR loads a list of files to extract from a given .txt file
extracts selected RP feature types
and saves them into separate CSV feature files (one per feature type)
# in_path: input file path to search for audio files (including subdirectories) OR .txt file containing a list of filenames
# out_file: output file name stub for feature files to write (if omitted, features will be returned from function)
# feature_types: RP feature types to extract. see rp_extract.py
# audiofile_types: a string or tuple of suffixes to look for file extensions to consider (include the .)
# path_prefix: prefix to be added to relative filenames (used typically together with .txt input files)
# label:
# append: append features to existing feature files
# append_diff: append new features to existing output file(s) only if they are not in it/them yet
# no_extension_check: does not check file format via extension. means that decoder is called on ALL files.
# force_resampling: force a target sampling rate (provided in Hz) when decoding (works with FFMPEG only!)
# out_HDF5: whether to store as HDF5 file format (otherwise CSV)
# log_AudioTypes: creates a log file with audio format info
# log_Errors: creates an error log file collecting all errors that appeared during feature extraction
# verbose: verbose output or not
"""
if in_path.lower().endswith('.txt'): # treat as input file list
from classes_io import read_filenames
filelist = read_filenames(in_path)
in_path = path_prefix # in case path_prefix is passed it is added to files in extract_all_files
elif os.path.isdir(in_path): # find files in path
if no_extension_check: audiofile_types = None # override filetypes to include all files (no extension check)
filelist = find_files(in_path,audiofile_types,relative_path=True)
# filelist will be relative, so we provide in_path below
elif in_path.lower().endswith(audiofile_types) or no_extension_check: # treat as single audio input file
filelist = [in_path]
in_path = None # no abs path to add below
else:
raise ValueError("Cannot not process this kind of input file: " + in_path)
if append_diff:
# get differential filelist to extract only new feature files
filelist = get_diff_filelist(out_file, filelist, feature_types, out_HDF5)
append = True
startjob = int(startbatch)
maxparts = int(endbatch) + 1
files_per_part = int(batchsize)
print("starting with: ")
print(startjob)
print("ending with: ")
print(maxparts - 1)
# Divide the task into subtasks - such that each subtask processes around 25 songs
print("files per part: ")
print(files_per_part)
start = 0
end = len(filelist)
print("used cores: " + str(size))
ncpus = size
parts = int(round(len(filelist) / files_per_part) + 1)
print("Split problem in parts: ")
print(str(parts))
step = (end - start) / parts + 1
if maxparts > parts:
maxparts = parts
for index in range(int(startjob + rank), int(maxparts), int(size)):
if index < parts:
starti = int(start+index*step)
endi = int(min(start+(index+1)*step, end))
print("calling process " + str(rank) + " index " + str(index) + " size " + str(size) + " starti " + str(starti) + " endi " + str(endi))
extract_all_files(filelist[starti:endi], in_path, out_file + str(index), feature_types, label, append, no_extension_check, force_resampling, out_HDF5, log_AudioTypes, log_Errors, verbose)
gc.collect()
gc.enable()
gc.collect()
return
'''
RP_extract: Rhythm Patterns Audio Feature Extractor
@author: 2014-2015 Alexander Schindler, Thomas Lidy
'''
def extract_all_files(filelist,
path,
out_file=None,
feature_types =['rp','ssd','rh'],
label=False,
append=False,
no_extension_check=False,
force_resampling=None,
out_HDF5=False,
log_AudioTypes=True,
log_Errors=True,
verbose=True):
"""
finds all files of a certain type (e.g. .wav and/or .mp3) in a path and all sub-directories in it
extracts selected RP feature types
and saves them into separate CSV feature files (one per feature type)
# filelist: list of files for features to be extracted
# path: absolute path that will be added at beginning of filelist (can be '')
# out_file: output file name stub for feature files to write (if omitted, features will be returned from function)
# feature_types: RP feature types to extract. see rp_extract.py
# label: use subdirectory name as class label
# no_extension_check: does not check file format via extension. means that decoder is called on ALL files.
# force_resampling: force a target sampling rate (provided in Hz) when decoding (works with FFMPEG only!)
# out_HDF5: whether to store as HDF5 file format (otherwise CSV)
"""
ext = feature_types
n = 0 # counting the files being processed
n_extracted = 0 # counting the files that were actually analyzed
err = 0 # counting errors
n_files = len(filelist)
# initialize filelist_extracted and dict containing all accumulated feature arrays
filelist_extracted = []
feat_array = {}
audio_logwriter = None
error_logwriter = None
audio_logwriter_wrote_header = False
start_time = time.time()
if out_file: # only if out_file is specified
if log_AudioTypes:
pass
#log_filename = out_file + '.audiotypes.log'
#audio_logfile = open(log_filename, 'w') # TODO allow append mode 'a'
#audio_logwriter = unicsv.UnicodeCSVWriter(audio_logfile) #, quoting=csv.QUOTE_ALL)
if log_Errors:
pass
#err_log_filename = out_file + '.errors.log'
#error_logfile = open(err_log_filename, 'w') # TODO allow append mode 'a'
#error_logwriter = unicsv.UnicodeCSVWriter(error_logfile) #, quoting=csv.QUOTE_ALL)
if out_HDF5:
FeatureWriter = HDF5FeatureWriter()
else:
FeatureWriter = CSVFeatureWriter()
FeatureWriter.open(out_file,ext,append=append)
for fil in filelist: # iterate over all files
try:
if n > 0:
elaps_time = time.time() - start_time
remain_time = elaps_time * n_files / n - elaps_time # n is the number of files done here
else:
remain_time = None
n += 1
if path:
filename = path + os.sep + fil
else:
filename = fil
if verbose:
print('#',n,'/',n_files,'(ETA: ' + timestr(remain_time) + "):", filename)
# read audio file (wav or mp3)
samplerate, samplewidth, data, decoder = audiofile_read(filename, verbose=verbose, include_decoder=True, no_extension_check=no_extension_check, force_resampling=force_resampling)
# audio file info
if verbose: print(samplerate, "Hz,", data.shape[1], "channel(s),", data.shape[0], "samples")
# extract features
# Note: the True/False flags are determined by checking if a feature is listed in 'ext' (see settings above)
feat = rp.rp_extract(data,
samplerate,
extract_rp = ('rp' in ext), # extract Rhythm Patterns features
extract_ssd = ('ssd' in ext), # extract Statistical Spectrum Descriptor
extract_tssd = ('tssd' in ext), # extract temporal Statistical Spectrum Descriptor
extract_rh = ('rh' in ext), # extract Rhythm Histogram features
extract_trh = ('trh' in ext), # extract temporal Rhythm Histogram features
extract_mvd = ('mvd' in ext), # extract Modulation Frequency Variance Descriptor
spectral_masking=True,
transform_db=True,
transform_phon=True,
transform_sone=True,
fluctuation_strength_weighting=True,
skip_leadin_fadeout=1,
step_width=1,
verbose = verbose)
# TODO check if ext and feat.keys are consistent
# WHAT TO USE AS ID (based on filename): 3 choices:
id = fil.replace(".","").replace(";","").replace(",","").replace("mp3",".mp3").replace("aiff",".aiff").replace("aif",".aif").replace("au",".au").replace("m4a", ".m4a").replace("wav",".wav").replace("flac",".flac").replace("ogg",".ogg") # rel. filename as from find_files
# id = filename # full filename incl. full path
# id = filename[len(path)+1:] # relative filename only (extracted from path)
if out_file:
# WRITE each feature set to a CSV or HDF5 file
id2 = None
if label:
id2 = id.replace("\\","/").split("/")[-2].strip()
if out_HDF5 and n_extracted==0:
# for HDF5 we need to know the vector dimension
# thats why we cannot open the file earlier
FeatureWriter.open(out_file,ext,feat,append=append) # append not working for now but possibly in future
FeatureWriter.write_features(id,feat,id2)
else:
# IN MEMORY: add the extracted features for 1 file to the array dict accumulating all files
# TODO: only if we don't have out_file? maybe we want this as a general option
if feat_array == {}: # for first file, initialize empty array with dimension of the feature set
for e in feat.keys():
feat_array[e] = np.empty((0,feat[e].shape[0]))
# store features in array
for e in feat.keys():
feat_array[e] = np.append(feat_array[e], feat[e].reshape(1,-1), axis = 0) # 1 for horizontal vector, -1 means take original dimension
filelist_extracted.append(id)
n_extracted += 1
# write list of analyzed audio files alongsize audio metadata (kHz, bit, etc.)
if audio_logwriter:
if not audio_logwriter_wrote_header: # write CSV header
log_info = ["filename","decoder","samplerate (kHz)","samplewidth (bit)","n channels","n samples"]
audio_logwriter.writerow(log_info)
audio_logwriter_wrote_header = True
log_info = [filename,decoder,samplerate,samplewidth*8,data.shape[1],data.shape[0]]
audio_logwriter.writerow(log_info)
gc.collect() # after every file we do garbage collection, otherwise our memory is used up quickly for some reason
except Exception as e:
print("ERROR analysing file: " + fil + ": " + str(e))
err += 1
if error_logwriter:
error_logwriter.writerow([fil,str(e)])
try:
if out_file: # close all output files
FeatureWriter.close()
if audio_logwriter:
audio_logfile.close()
if error_logwriter:
error_logfile.close()
except Exception as e:
print("ERROR closing the output or log files: " + str(e))
end_time = time.time()
if verbose:
print("FEATURE EXTRACTION FINISHED.", n, "file(s) processed,", n_extracted, "successful. Duration:", timestr(end_time-start_time))
if err > 0:
print(err, "file(s) had ERRORs during feature extraction.",)
if log_Errors:
print ("See", err_log_filename)
else:
print()
if out_file:
opt_ext = '.h5' if out_HDF5 else ''
print("Feature file(s):", out_file + "." + str(ext) + opt_ext)
if out_file is None:
return filelist_extracted, feat_array
def extract_all_rhythm_feats(param_folder):
feature_types = []
feature_types.append('rp')
feature_types.append('rh')
audiofile_types = get_supported_audio_formats()
output_filename = "features1/out"
input_path = str(param_folder)
print("Extracting features:", feature_types)
print("From files in:", input_path)
print("File types:",)
print(audiofile_types)
time_dict = {}
tic1 = int(round(time.time() * 1000))
extract_all_files_generic(input_path,output_filename,feature_types, audiofile_types,
None, False, False, False, False, None,
False, log_AudioTypes = True)
tac1 = int(round(time.time() * 1000))
time_dict['MPI TIME FEATURE']= tac1 - tic1
#if rank == 0:
print("Process " + str(rank) + " time: " + str(time_dict))
return 0
app = QApplication(sys.argv)
myWindow = MyWindowClass(None)
myWindow.show()
app.exec_()