Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit ccd57a1

Browse files
authoredMay 2, 2024··
Update Modin* name (#2295)
* Update README.md Update Modin* name by Stefana Raileanu * Update README.md Update Modin* name by Stefana Raileanu * Update sample.json Update Modin* name by Stefana Raileanu * Update README.md Update Modin* name by Stefana Raileanu * Update sample.json
1 parent 9fa0a0f commit ccd57a1

File tree

5 files changed

+18
-18
lines changed

5 files changed

+18
-18
lines changed
 

‎AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
# Modin Get Started Sample
1+
# Modin* Get Started Sample
22

3-
The `Modin Getting Started` sample demonstrates how to use distributed Pandas using the Modin package.
3+
The `Modin* Getting Started` sample demonstrates how to use distributed Pandas using the Modin package.
44

55
| Area | Description
66
| :--- | :---
77
| Category | Getting Started
8-
| What you will learn | Basic Modin programming model for Intel processors
8+
| What you will learn | Basic Modin* programming model for Intel processors
99
| Time to complete | 5 to 8 minutes
1010

1111
## Purpose
@@ -52,7 +52,7 @@ This get started sample code is implemented for CPU using the Python language. T
5252
conda install ipykernel
5353
python -m ipykernel install --user --name usr_modin
5454
```
55-
## Run the `Modin Get Started` Sample
55+
## Run the `Modin* Get Started` Sample
5656

5757
You can run the Jupyter notebook with the sample code on your local server or download the sample code from the notebook as a Python file and run it locally.
5858

‎AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/sample.json

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
{
22
"guid": "AE280EFE-9EB1-406D-B32D-5991F707E195",
3-
"name": "Intel® Distribution of Modin* Getting Started",
3+
"name": "Modin* Getting Started",
44
"categories": ["Toolkit/oneAPI AI And Analytics/Getting Started"],
5-
"description": "This sample illustrates how to use Modin accelerated Pandas functions and notes the performance gain when compared to standard Pandas functions",
5+
"description": "This sample illustrates how to use Modin* accelerated Pandas functions and notes the performance gain when compared to standard Pandas functions",
66
"builder": ["cli"],
77
"languages": [{"python":{}}],
88
"os":["linux"],
@@ -19,7 +19,7 @@
1919
"conda activate intel-aikit-modin",
2020
"pip install -r requirements.txt # Installing notebook's dependencies",
2121
"pip install runipy # Installing 'runipy' for extended abilities to execute the notebook",
22-
"runipy Modin_GettingStarted.ipynb # Test 'Modin is faster than pandas' case",
22+
"runipy Modin_GettingStarted.ipynb # Test 'Modin* is faster than pandas' case",
2323
"MODIN_CPUS=1 runipy Modin_GettingStarted.ipynb # Test 'Modin is slower than pandas' case"
2424
]
2525
}

‎AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/README.md

+7-7
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
# Modin Vs. Pandas Performance Sample
1+
# Modin* Vs. Pandas Performance Sample
22

3-
The `Modin Vs. Pandas Performance` code illustrates how to use Modin* to replace the Pandas API. The sample compares the performance of Modin and the performance of Pandas for specific dataframe operations.
3+
The `Modin* Vs. Pandas Performance` code illustrates how to use Modin* to replace the Pandas API. The sample compares the performance of Modin* and the performance of Pandas for specific dataframe operations.
44

55
| Area | Description
66
|:--- |:---
77
| Category | Concepts and Functionality
8-
| What you will learn | How to accelerate the Pandas API using Modin.
8+
| What you will learn | How to accelerate the Pandas API using Modin*.
99
| Time to complete | Less than 10 minutes
1010

1111
## Purpose
@@ -19,17 +19,17 @@ You can run the sample locally or in Google Colaboratory (Colab).
1919
|:--- |:---
2020
| OS | Ubuntu* 20.04 (or newer)
2121
| Hardware | Intel® Core™ Gen10 Processor <br> Intel® Xeon® Scalable Performance processors
22-
| Software | Intel® Distribution of Modin*
22+
| Software | Modin*
2323

2424
## Key Implementation Details
2525

26-
This code sample is implemented for CPU using Python programming language. The sample requires NumPy, Pandas, Modin libraries, and the time module in Python.
26+
This code sample is implemented for CPU using Python programming language. The sample requires NumPy, Pandas, Modin* libraries, and the time module in Python.
2727

2828
## Environment Setup
2929

3030
If you want to run the sample on a local system using a command-line interface (CLI), you must install the Modin in a new Conda* environment first.
3131

32-
### Install Modin
32+
### Install Modin*
3333

3434
1. Create a Conda environment.
3535
```
@@ -65,7 +65,7 @@ If you want to run the sample on a local system using a command-line interface (
6565
ipython Modin_Vs_Pandas.ipynb
6666
```
6767

68-
## Run the `Modin Vs Pandas Performance` Sample in Google Colaboratory
68+
## Run the `Modin* Vs Pandas Performance` Sample in Google Colaboratory
6969

7070
1. Change to the directory containing the `Modin_Vs_Pandas.ipynb` notebook file on your local system.
7171

‎AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/sample.json

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
{
22
"guid": "FE479C5C-C7A0-4612-B8D0-F83D07155411",
3-
"name": "Intel® Modin Vs. Pandas Performance",
3+
"name": "Modin* Vs. Pandas Performance",
44
"categories": ["Toolkit/oneAPI AI And Analytics/Getting Started"],
5-
"description": "This sample code illustrates how Intel® Modin accelerates the performance of Pandas for computational operations on a dataframe.",
5+
"description": "This sample code illustrates how Modin* accelerates the performance of Pandas for computational operations on a dataframe.",
66
"builder": ["cli"],
77
"languages": [{
88
"python": {}

‎AI-and-Analytics/Getting-Started-Samples/README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@ Third party program Licenses can be found here: [third-party-programs.txt](https
1818
|--------------------------| --------- | ------------------------------------------------ | -
1919
|Inference Optimization| Intel® Neural Compressor (INC) | [Intel® Neural Compressor (INC) Sample-for-PyTorch](INC-Quantization-Sample-for-PyTorch) | Performs INT8 quantization on a Hugging Face BERT model.
2020
|Inference Optimization| Intel® Neural Compressor (INC) | [Intel® Neural Compressor (INC) Sample-for-Tensorflow](INC-Sample-for-Tensorflow) | Quantizes a FP32 model into INT8 by Intel® Neural Compressor (INC) and compares the performance between FP32 and INT8.
21-
|Data Analytics <br/> Classical Machine Learning | Modin | [Modin_GettingStarted](Modin_GettingStarted) | Run Modin-accelerated Pandas functions and note the performance gain.
22-
|Data Analytics <br/> Classical Machine Learning | Modin |[Modin_Vs_Pandas](Modin_Vs_Pandas)| Compares the performance of Intel® Distribution of Modin* and the performance of Pandas.
21+
|Data Analytics <br/> Classical Machine Learning | Modin* | [Modin_GettingStarted](Modin_GettingStarted) | Run Modin*-accelerated Pandas functions and note the performance gain.
22+
|Data Analytics <br/> Classical Machine Learning | Modin* |[Modin_Vs_Pandas](Modin_Vs_Pandas)| Compares the performance of Intel® Distribution of Modin* and the performance of Pandas.
2323
|Classical Machine Learning| Intel® Optimization for XGBoost* | [IntelPython_XGBoost_GettingStarted](IntelPython_XGBoost_GettingStarted) | Set up and trains an XGBoost* model on datasets for prediction.
2424
|Classical Machine Learning| daal4py | [IntelPython_daal4py_GettingStarted](IntelPython_daal4py_GettingStarted) | Batch linear regression using the Python API package daal4py from oneAPI Data Analytics Library (oneDAL).
2525
|Deep Learning <br/> Inference Optimization| Intel® Optimization for TensorFlow* | [IntelTensorFlow_GettingStarted](IntelTensorFlow_GettingStarted) | A simple training example for TensorFlow.

0 commit comments

Comments
 (0)
Please sign in to comment.