diff --git a/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/README.md b/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/README.md
index e01554be45..50b7e716ca 100644
--- a/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/README.md
+++ b/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/README.md
@@ -1,11 +1,11 @@
-# Modin Get Started Sample
+# Modin* Get Started Sample
-The `Modin Getting Started` sample demonstrates how to use distributed Pandas using the Modin package.
+The `Modin* Getting Started` sample demonstrates how to use distributed Pandas using the Modin package.
| Area | Description
| :--- | :---
| Category | Getting Started
-| What you will learn | Basic Modin programming model for Intel processors
+| What you will learn | Basic Modin* programming model for Intel processors
| Time to complete | 5 to 8 minutes
## Purpose
@@ -52,7 +52,7 @@ This get started sample code is implemented for CPU using the Python language. T
conda install ipykernel
python -m ipykernel install --user --name usr_modin
```
-## Run the `Modin Get Started` Sample
+## Run the `Modin* Get Started` Sample
You can run the Jupyter notebook with the sample code on your local server or download the sample code from the notebook as a Python file and run it locally.
diff --git a/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/sample.json b/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/sample.json
index b037a98ba4..270b1249f6 100644
--- a/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/sample.json
+++ b/AI-and-Analytics/Getting-Started-Samples/Modin_GettingStarted/sample.json
@@ -1,8 +1,8 @@
{
"guid": "AE280EFE-9EB1-406D-B32D-5991F707E195",
- "name": "Intel® Distribution of Modin* Getting Started",
+ "name": "Modin* Getting Started",
"categories": ["Toolkit/oneAPI AI And Analytics/Getting Started"],
- "description": "This sample illustrates how to use Modin accelerated Pandas functions and notes the performance gain when compared to standard Pandas functions",
+ "description": "This sample illustrates how to use Modin* accelerated Pandas functions and notes the performance gain when compared to standard Pandas functions",
"builder": ["cli"],
"languages": [{"python":{}}],
"os":["linux"],
@@ -19,7 +19,7 @@
"conda activate intel-aikit-modin",
"pip install -r requirements.txt # Installing notebook's dependencies",
"pip install runipy # Installing 'runipy' for extended abilities to execute the notebook",
- "runipy Modin_GettingStarted.ipynb # Test 'Modin is faster than pandas' case",
+ "runipy Modin_GettingStarted.ipynb # Test 'Modin* is faster than pandas' case",
"MODIN_CPUS=1 runipy Modin_GettingStarted.ipynb # Test 'Modin is slower than pandas' case"
]
}
diff --git a/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/README.md b/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/README.md
index 9ee6529109..14f3f0f442 100644
--- a/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/README.md
+++ b/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/README.md
@@ -1,11 +1,11 @@
-# Modin Vs. Pandas Performance Sample
+# Modin* Vs. Pandas Performance Sample
-The `Modin Vs. Pandas Performance` code illustrates how to use Modin* to replace the Pandas API. The sample compares the performance of Modin and the performance of Pandas for specific dataframe operations.
+The `Modin* Vs. Pandas Performance` code illustrates how to use Modin* to replace the Pandas API. The sample compares the performance of Modin* and the performance of Pandas for specific dataframe operations.
| Area | Description
|:--- |:---
| Category | Concepts and Functionality
-| What you will learn | How to accelerate the Pandas API using Modin.
+| What you will learn | How to accelerate the Pandas API using Modin*.
| Time to complete | Less than 10 minutes
## Purpose
@@ -19,17 +19,17 @@ You can run the sample locally or in Google Colaboratory (Colab).
|:--- |:---
| OS | Ubuntu* 20.04 (or newer)
| Hardware | Intel® Core™ Gen10 Processor
Intel® Xeon® Scalable Performance processors
-| Software | Intel® Distribution of Modin*
+| Software | Modin*
## Key Implementation Details
-This code sample is implemented for CPU using Python programming language. The sample requires NumPy, Pandas, Modin libraries, and the time module in Python.
+This code sample is implemented for CPU using Python programming language. The sample requires NumPy, Pandas, Modin* libraries, and the time module in Python.
## Environment Setup
If you want to run the sample on a local system using a command-line interface (CLI), you must install the Modin in a new Conda* environment first.
-### Install Modin
+### Install Modin*
1. Create a Conda environment.
```
@@ -65,7 +65,7 @@ If you want to run the sample on a local system using a command-line interface (
ipython Modin_Vs_Pandas.ipynb
```
-## Run the `Modin Vs Pandas Performance` Sample in Google Colaboratory
+## Run the `Modin* Vs Pandas Performance` Sample in Google Colaboratory
1. Change to the directory containing the `Modin_Vs_Pandas.ipynb` notebook file on your local system.
diff --git a/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/sample.json b/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/sample.json
index d51b1525e8..bab9d6980f 100644
--- a/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/sample.json
+++ b/AI-and-Analytics/Getting-Started-Samples/Modin_Vs_Pandas/sample.json
@@ -1,8 +1,8 @@
{
"guid": "FE479C5C-C7A0-4612-B8D0-F83D07155411",
- "name": "Intel® Modin Vs. Pandas Performance",
+ "name": "Modin* Vs. Pandas Performance",
"categories": ["Toolkit/oneAPI AI And Analytics/Getting Started"],
- "description": "This sample code illustrates how Intel® Modin accelerates the performance of Pandas for computational operations on a dataframe.",
+ "description": "This sample code illustrates how Modin* accelerates the performance of Pandas for computational operations on a dataframe.",
"builder": ["cli"],
"languages": [{
"python": {}
diff --git a/AI-and-Analytics/Getting-Started-Samples/README.md b/AI-and-Analytics/Getting-Started-Samples/README.md
index c465232a0e..a8d82bd7da 100644
--- a/AI-and-Analytics/Getting-Started-Samples/README.md
+++ b/AI-and-Analytics/Getting-Started-Samples/README.md
@@ -18,8 +18,8 @@ Third party program Licenses can be found here: [third-party-programs.txt](https
|--------------------------| --------- | ------------------------------------------------ | -
|Inference Optimization| Intel® Neural Compressor (INC) | [Intel® Neural Compressor (INC) Sample-for-PyTorch](INC-Quantization-Sample-for-PyTorch) | Performs INT8 quantization on a Hugging Face BERT model.
|Inference Optimization| Intel® Neural Compressor (INC) | [Intel® Neural Compressor (INC) Sample-for-Tensorflow](INC-Sample-for-Tensorflow) | Quantizes a FP32 model into INT8 by Intel® Neural Compressor (INC) and compares the performance between FP32 and INT8.
-|Data Analytics
Classical Machine Learning | Modin | [Modin_GettingStarted](Modin_GettingStarted) | Run Modin-accelerated Pandas functions and note the performance gain.
-|Data Analytics
Classical Machine Learning | Modin |[Modin_Vs_Pandas](Modin_Vs_Pandas)| Compares the performance of Intel® Distribution of Modin* and the performance of Pandas.
+|Data Analytics
Classical Machine Learning | Modin* | [Modin_GettingStarted](Modin_GettingStarted) | Run Modin*-accelerated Pandas functions and note the performance gain.
+|Data Analytics
Classical Machine Learning | Modin* |[Modin_Vs_Pandas](Modin_Vs_Pandas)| Compares the performance of Intel® Distribution of Modin* and the performance of Pandas.
|Classical Machine Learning| Intel® Optimization for XGBoost* | [IntelPython_XGBoost_GettingStarted](IntelPython_XGBoost_GettingStarted) | Set up and trains an XGBoost* model on datasets for prediction.
|Classical Machine Learning| daal4py | [IntelPython_daal4py_GettingStarted](IntelPython_daal4py_GettingStarted) | Batch linear regression using the Python API package daal4py from oneAPI Data Analytics Library (oneDAL).
|Deep Learning
Inference Optimization| Intel® Optimization for TensorFlow* | [IntelTensorFlow_GettingStarted](IntelTensorFlow_GettingStarted) | A simple training example for TensorFlow.