-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmovielens100k.py
83 lines (64 loc) · 2.43 KB
/
movielens100k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import datetime
import numpy as np
import pandas as pd
if __name__ == '__main__':
# Load and process ratings
names = ['user', 'item', 'rating', 'timestamp']
dtype = {'user': str, 'item': str, 'rating': np.float64}
def date_parser(timestamp):
return datetime.datetime.fromtimestamp(float(timestamp))
df = pd.read_csv('ml-100k/u.data', sep='\t', names=names, dtype=dtype,
parse_dates=['timestamp'], date_parser=date_parser)
df['timestamp'] = df['timestamp'].map(lambda x: x.value)
df.sort_values(by='timestamp', inplace=True)
df.reset_index(drop=True, inplace=True)
# Load and process item infos
names = [
'item',
'title',
'release_date',
'video_release_date',
'imdb_url',
'unknown',
'action',
'adventure',
'animation',
'children_s',
'comedy',
'crime',
'documentary',
'drama',
'fantasy',
'film_noir',
'horror',
'musical',
'mystery',
'romance',
'sci_fi',
'thriller',
'war',
'western'
]
to_remove = ['video_release_date', 'imdb_url']
usecols = [name for name in names if name not in to_remove]
dtype = {name: np.uint8 for name in names[5:]}
dtype['item'] = str
item_infos = pd.read_csv('ml-100k/u.item', sep='|', engine='python', names=names, dtype=dtype,
usecols=usecols, parse_dates=['release_date'])
item_infos['release_date'] = item_infos['release_date'].map(lambda x: x.value)
item_infos['title'].replace('unknown', np.nan, inplace=True)
genres = item_infos.drop(columns=['item', 'title', 'release_date'])
item_infos['genres'] = genres.apply(
lambda row: ', '.join([genre for genre, occurs in zip(genres.columns, row) if occurs]),
axis=1
)
item_infos = item_infos[['item', 'title', 'release_date', 'genres']]
# Load and process user infos
names = ['user', 'age', 'gender', 'occupation', 'zip_code']
dtype = {'user': str, 'age': np.uint8}
user_infos = pd.read_csv('ml-100k/u.user', sep='|', names=names, dtype=dtype)
user_infos['occupation'].replace('none', np.nan, inplace=True)
# Merge everything together and save to csv file
df = df.merge(item_infos, how='left', on='item')
df = df.merge(user_infos, how='left', on='user')
df.to_csv('ml_100k.csv', sep='\t', index=False)