|
21 | 21 | "execution_count": 1,
|
22 | 22 | "metadata": {
|
23 | 23 | "execution": {
|
24 |
| - "iopub.execute_input": "2023-01-29T19:27:12.328598Z", |
25 |
| - "iopub.status.busy": "2023-01-29T19:27:12.328456Z", |
26 |
| - "iopub.status.idle": "2023-01-29T19:27:21.535869Z", |
27 |
| - "shell.execute_reply": "2023-01-29T19:27:21.535304Z" |
| 24 | + "iopub.execute_input": "2023-09-02T00:49:30.394238Z", |
| 25 | + "iopub.status.busy": "2023-09-02T00:49:30.393986Z", |
| 26 | + "iopub.status.idle": "2023-09-02T00:49:41.362597Z", |
| 27 | + "shell.execute_reply": "2023-09-02T00:49:41.362266Z" |
28 | 28 | },
|
29 | 29 | "tags": []
|
30 | 30 | },
|
|
33 | 33 | "name": "stdout",
|
34 | 34 | "output_type": "stream",
|
35 | 35 | "text": [
|
36 |
| - "30000 MAE: 2.220942\n", |
37 |
| - "60000 MAE: 2.270271\n", |
38 |
| - "90000 MAE: 2.301302\n", |
39 |
| - "120000 MAE: 2.275876\n", |
40 |
| - "150000 MAE: 2.275224\n", |
41 |
| - "180000 MAE: 2.289347\n" |
| 36 | + "30000 MAE: 13.328051\n", |
| 37 | + "60000 MAE: 7.824087\n", |
| 38 | + "90000 MAE: 6.003909\n", |
| 39 | + "120000 MAE: 5.052855\n", |
| 40 | + "150000 MAE: 4.496826\n", |
| 41 | + "180000 MAE: 4.140702\n" |
42 | 42 | ]
|
43 | 43 | }
|
44 | 44 | ],
|
|
105 | 105 | "execution_count": 2,
|
106 | 106 | "metadata": {
|
107 | 107 | "execution": {
|
108 |
| - "iopub.execute_input": "2023-01-29T19:27:21.538389Z", |
109 |
| - "iopub.status.busy": "2023-01-29T19:27:21.538204Z", |
110 |
| - "iopub.status.idle": "2023-01-29T19:27:21.555741Z", |
111 |
| - "shell.execute_reply": "2023-01-29T19:27:21.555167Z" |
| 108 | + "iopub.execute_input": "2023-09-02T00:49:41.364443Z", |
| 109 | + "iopub.status.busy": "2023-09-02T00:49:41.364253Z", |
| 110 | + "iopub.status.idle": "2023-09-02T00:49:41.386868Z", |
| 111 | + "shell.execute_reply": "2023-09-02T00:49:41.386606Z" |
112 | 112 | },
|
113 | 113 | "tags": []
|
114 | 114 | },
|
|
124 | 124 | " 'day': x['moment'].weekday()\n",
|
125 | 125 | " }\n",
|
126 | 126 | "\n",
|
127 |
| - "</code></details><div class=\"river-component river-union\"><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">['clouds', 'humidity', 'pressure', 'temperature', 'wind']</pre></summary><code class=\"river-estimator-params\">(\n", |
| 127 | + "</code></details><div class=\"river-component river-union\"><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">['clouds', [...]</pre></summary><code class=\"river-estimator-params\">Select (\n", |
128 | 128 | " clouds\n",
|
129 | 129 | " humidity\n",
|
130 | 130 | " pressure\n",
|
131 | 131 | " temperature\n",
|
132 | 132 | " wind\n",
|
133 | 133 | ")\n",
|
134 |
| - "\n", |
135 |
| - "</code></details><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">y_mean_by_station_and_hour</pre></summary><code class=\"river-estimator-params\">(\n", |
| 134 | + "</code></details><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">y_mean_by_station_and_hour</pre></summary><code class=\"river-estimator-params\">TargetAgg (\n", |
136 | 135 | " by=['station', 'hour']\n",
|
137 | 136 | " how=Mean ()\n",
|
138 | 137 | " target_name=\"y\"\n",
|
139 | 138 | ")\n",
|
140 |
| - "\n", |
141 |
| - "</code></details><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">y_ewm_0.5_by_station</pre></summary><code class=\"river-estimator-params\">(\n", |
| 139 | + "</code></details><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">y_ewm_0.5_by_station</pre></summary><code class=\"river-estimator-params\">TargetAgg (\n", |
142 | 140 | " by=['station']\n",
|
143 | 141 | " how=EWMean (\n",
|
144 | 142 | " fading_factor=0.5\n",
|
145 | 143 | " )\n",
|
146 | 144 | " target_name=\"y\"\n",
|
147 | 145 | ")\n",
|
148 |
| - "\n", |
149 |
| - "</code></details></div><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">StandardScaler</pre></summary><code class=\"river-estimator-params\">(\n", |
| 146 | + "</code></details></div><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">StandardScaler</pre></summary><code class=\"river-estimator-params\">StandardScaler (\n", |
150 | 147 | " with_std=True\n",
|
151 | 148 | ")\n",
|
152 |
| - "\n", |
153 |
| - "</code></details><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">LinearRegression</pre></summary><code class=\"river-estimator-params\">(\n", |
| 149 | + "</code></details><details class=\"river-component river-estimator\"><summary class=\"river-summary\"><pre class=\"river-estimator-name\">LinearRegression</pre></summary><code class=\"river-estimator-params\">LinearRegression (\n", |
154 | 150 | " optimizer=SGD (\n",
|
155 | 151 | " lr=Constant (\n",
|
156 | 152 | " learning_rate=0.01\n",
|
|
166 | 162 | " clip_gradient=1e+12\n",
|
167 | 163 | " initializer=Zeros ()\n",
|
168 | 164 | ")\n",
|
169 |
| - "\n", |
170 | 165 | "</code></details></div><style scoped>\n",
|
171 | 166 | ".river-estimator {\n",
|
172 | 167 | " padding: 1em;\n",
|
173 | 168 | " border-style: solid;\n",
|
174 | 169 | " background: white;\n",
|
| 170 | + " max-width: max-content;\n", |
175 | 171 | "}\n",
|
176 | 172 | "\n",
|
177 | 173 | ".river-pipeline {\n",
|
178 | 174 | " display: flex;\n",
|
179 | 175 | " flex-direction: column;\n",
|
180 | 176 | " align-items: center;\n",
|
181 |
| - " background: linear-gradient(#000, #000) no-repeat center / 3px 100%;\n", |
| 177 | + " background: linear-gradient(#000, #000) no-repeat center / 1.5px 100%;\n", |
182 | 178 | "}\n",
|
183 | 179 | "\n",
|
184 | 180 | ".river-union {\n",
|
|
215 | 211 | " margin-top: 0;\n",
|
216 | 212 | "}\n",
|
217 | 213 | "\n",
|
| 214 | + ".river-union > .river-component {\n", |
| 215 | + " margin-top: 0;\n", |
| 216 | + "}\n", |
| 217 | + "\n", |
218 | 218 | ".river-union > .pipeline {\n",
|
219 | 219 | " margin-top: 0;\n",
|
220 | 220 | "}\n",
|
|
230 | 230 | ".river-estimator-params {\n",
|
231 | 231 | " display: block;\n",
|
232 | 232 | " white-space: pre-wrap;\n",
|
233 |
| - " font-size: 120%;\n", |
234 |
| - " margin-bottom: -1em;\n", |
| 233 | + " font-size: 110%;\n", |
| 234 | + " margin-top: 1em;\n", |
235 | 235 | "}\n",
|
236 | 236 | "\n",
|
237 | 237 | ".river-estimator > .river-estimator-params,\n",
|
238 | 238 | ".river-wrapper > .river-details > river-estimator-params {\n",
|
239 | 239 | " background-color: white !important;\n",
|
240 | 240 | "}\n",
|
241 | 241 | "\n",
|
| 242 | + ".river-wrapper > .river-details {\n", |
| 243 | + " margin-bottom: 1em;\n", |
| 244 | + "}\n", |
| 245 | + "\n", |
242 | 246 | ".river-estimator-name {\n",
|
243 | 247 | " display: inline;\n",
|
244 | 248 | " margin: 0;\n",
|
245 |
| - " font-size: 130%;\n", |
| 249 | + " font-size: 110%;\n", |
246 | 250 | "}\n",
|
247 | 251 | "\n",
|
248 | 252 | "/* Toggle */\n",
|
|
257 | 261 | " width: 100%;\n",
|
258 | 262 | "}\n",
|
259 | 263 | "</style></div>"
|
| 264 | + ], |
| 265 | + "text/plain": [ |
| 266 | + "Pipeline (\n", |
| 267 | + " FuncTransformer (\n", |
| 268 | + " func=\"add_time_features\"\n", |
| 269 | + " ),\n", |
| 270 | + " TransformerUnion (\n", |
| 271 | + " Select (\n", |
| 272 | + " clouds\n", |
| 273 | + " humidity\n", |
| 274 | + " pressure\n", |
| 275 | + " temperature\n", |
| 276 | + " wind\n", |
| 277 | + " ),\n", |
| 278 | + " TargetAgg (\n", |
| 279 | + " by=['station', 'hour']\n", |
| 280 | + " how=Mean ()\n", |
| 281 | + " target_name=\"y\"\n", |
| 282 | + " ),\n", |
| 283 | + " TargetAgg (\n", |
| 284 | + " by=['station']\n", |
| 285 | + " how=EWMean (\n", |
| 286 | + " fading_factor=0.5\n", |
| 287 | + " )\n", |
| 288 | + " target_name=\"y\"\n", |
| 289 | + " )\n", |
| 290 | + " ),\n", |
| 291 | + " StandardScaler (\n", |
| 292 | + " with_std=True\n", |
| 293 | + " ),\n", |
| 294 | + " LinearRegression (\n", |
| 295 | + " optimizer=SGD (\n", |
| 296 | + " lr=Constant (\n", |
| 297 | + " learning_rate=0.01\n", |
| 298 | + " )\n", |
| 299 | + " )\n", |
| 300 | + " loss=Squared ()\n", |
| 301 | + " l2=0.\n", |
| 302 | + " l1=0.\n", |
| 303 | + " intercept_init=0.\n", |
| 304 | + " intercept_lr=Constant (\n", |
| 305 | + " learning_rate=0.01\n", |
| 306 | + " )\n", |
| 307 | + " clip_gradient=1e+12\n", |
| 308 | + " initializer=Zeros ()\n", |
| 309 | + " )\n", |
| 310 | + ")" |
260 | 311 | ]
|
261 | 312 | },
|
262 | 313 | "execution_count": 2,
|
|
280 | 331 | "execution_count": 3,
|
281 | 332 | "metadata": {
|
282 | 333 | "execution": {
|
283 |
| - "iopub.execute_input": "2023-01-29T19:27:21.558294Z", |
284 |
| - "iopub.status.busy": "2023-01-29T19:27:21.558145Z", |
285 |
| - "iopub.status.idle": "2023-01-29T19:27:21.571901Z", |
286 |
| - "shell.execute_reply": "2023-01-29T19:27:21.571426Z" |
| 334 | + "iopub.execute_input": "2023-09-02T00:49:41.388613Z", |
| 335 | + "iopub.status.busy": "2023-09-02T00:49:41.388503Z", |
| 336 | + "iopub.status.idle": "2023-09-02T00:49:41.403489Z", |
| 337 | + "shell.execute_reply": "2023-09-02T00:49:41.403226Z" |
287 | 338 | },
|
288 | 339 | "tags": []
|
289 | 340 | },
|
|
349 | 400 | "pressure: 0.04916 (float)\n",
|
350 | 401 | "temperature: -0.51938 (float)\n",
|
351 | 402 | "wind: -0.69426 (float)\n",
|
352 |
| - "y_ewm_0.5_by_station: 0.19214 (float)\n", |
353 |
| - "y_mean_by_station_and_hour: -0.26013 (float)\n", |
| 403 | + "y_ewm_0.5_by_station: 0.19640 (float)\n", |
| 404 | + "y_mean_by_station_and_hour: -0.27110 (float)\n", |
354 | 405 | "\n",
|
355 | 406 | "4. LinearRegression\n",
|
356 | 407 | "-------------------\n",
|
357 |
| - "Name Value Weight Contribution \n", |
358 |
| - " Intercept 1.00000 9.22316 9.22316 \n", |
359 |
| - " y_ewm_0.5_by_station 0.19214 9.26418 1.78000 \n", |
360 |
| - " humidity 1.16366 1.01252 1.17823 \n", |
361 |
| - " temperature -0.51938 -0.42112 0.21872 \n", |
362 |
| - " wind -0.69426 -0.04088 0.02838 \n", |
363 |
| - " pressure 0.04916 0.18137 0.00892 \n", |
364 |
| - "y_mean_by_station_and_hour -0.26013 0.19801 -0.05151 \n", |
365 |
| - " clouds 1.54778 -0.32697 -0.50608 \n", |
| 408 | + "Name Value Weight Contribution \n", |
| 409 | + "Intercept 1.00000 9.19960 9.19960 \n", |
| 410 | + "y_ewm_0.5_by_station 0.19640 9.19349 1.80562 \n", |
| 411 | + "humidity 1.16366 1.01680 1.18320 \n", |
| 412 | + "temperature -0.51938 -0.41575 0.21593 \n", |
| 413 | + " wind -0.69426 -0.03810 0.02645 \n", |
| 414 | + "pressure 0.04916 0.18321 0.00901 \n", |
| 415 | + "y_mean_by_station_and_hour -0.27110 0.19553 -0.05301 \n", |
| 416 | + " clouds 1.54778 -0.32838 -0.50827 \n", |
366 | 417 | "\n",
|
367 |
| - "Prediction: 11.87982\n" |
| 418 | + "Prediction: 11.87854\n" |
368 | 419 | ]
|
369 | 420 | }
|
370 | 421 | ],
|
|
396 | 447 | "name": "python",
|
397 | 448 | "nbconvert_exporter": "python",
|
398 | 449 | "pygments_lexer": "ipython3",
|
399 |
| - "version": "3.11.0" |
| 450 | + "version": "3.10.8" |
400 | 451 | }
|
401 | 452 | },
|
402 | 453 | "nbformat": 4,
|
|
0 commit comments