|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pyplot as plt |
| 3 | + |
| 4 | +#1-1 |
| 5 | +a = 1.0 |
| 6 | +freq= 440 |
| 7 | +samp_rate = 16000 |
| 8 | +d = 3 |
| 9 | + |
| 10 | +t = np.linspace(0, d, int(samp_rate * d), endpoint=False) |
| 11 | + |
| 12 | + |
| 13 | +sin_wave = a * np.sin(2 * np.pi * freq * t) |
| 14 | + |
| 15 | + |
| 16 | +plt.plot(t,sin_wave) |
| 17 | +plt.title("Sin Wave") |
| 18 | +plt.xlabel("Time [s]") |
| 19 | +plt.ylabel("Amplitude") |
| 20 | +plt.show() |
| 21 | + |
| 22 | +#1-2 |
| 23 | +import wave |
| 24 | + |
| 25 | + |
| 26 | +output = 'sin_wave_440Hz.wav' |
| 27 | +with wave.open(output, 'w') as wf: |
| 28 | + wf.setnchannels(1) |
| 29 | + wf.setsampwidth(2) |
| 30 | + wf.setframerate(samp_rate) |
| 31 | + wf.writeframes((sin_wave * 32767).astype(np.int16).tobytes()) |
| 32 | + |
| 33 | + |
| 34 | +#1-3 |
| 35 | +freq2 = 660 |
| 36 | +sin_wave2 = a * np.sin(2 * np.pi * freq2 * t) |
| 37 | + |
| 38 | + |
| 39 | +stereo_wave = np.vstack((sin_wave, sin_wave2)).T |
| 40 | + |
| 41 | + |
| 42 | +output_stereo = 'stereo_sin_waves.wav' |
| 43 | +with wave.open(output_stereo, 'w') as wf: |
| 44 | + wf.setnchannels(2) |
| 45 | + wf.setsampwidth(2) |
| 46 | + wf.setframerate(samp_rate) |
| 47 | + wf.writeframes((stereo_wave * 32767).astype(np.int16).tobytes()) |
| 48 | + |
| 49 | +#1-4 |
| 50 | +white_noise = np.random.normal(0, 1, len(t)) |
| 51 | + |
| 52 | + |
| 53 | +plt.plot(t, white_noise) |
| 54 | +plt.title("White Noise") |
| 55 | +plt.xlabel("Time [s]") |
| 56 | +plt.ylabel("Amplitude") |
| 57 | +plt.show() |
| 58 | + |
| 59 | + |
| 60 | +#1-5 |
| 61 | +mixed_signal = sin_wave + white_noise |
| 62 | + |
| 63 | + |
| 64 | +plt.plot(t, mixed_signal) |
| 65 | +plt.title("Mixed Signal (Sin Wave + White Noise)") |
| 66 | +plt.xlabel("Time [s]") |
| 67 | +plt.ylabel("Amplitude") |
| 68 | +plt.show() |
| 69 | + |
| 70 | +#1-6 |
| 71 | +def calculate_snr(signal, noise): |
| 72 | + s_power = np.sum(signal ** 2) / len(signal) |
| 73 | + n_power = np.sum(noise ** 2) / len(noise) |
| 74 | + snr = 10 * np.log10(s_power / n_power) |
| 75 | + return snr |
| 76 | + |
| 77 | +#1-7 |
| 78 | +def add_noise_with_snr(signal, desired_snr_db): |
| 79 | + s_power = np.sum(signal ** 2) / len(signal) |
| 80 | + snr_linear = 10 ** (desired_snr_db / 10) |
| 81 | + n_power = s_power / snr_linear |
| 82 | + noise = np.random.normal(0, np.sqrt(n_power), len(signal)) |
| 83 | + return signal + noise |
| 84 | + |
| 85 | +#1-8 |
| 86 | +desired_snr= 6 |
| 87 | +noise_signal = add_noise_with_snr(sin_wave, desired_snr) |
| 88 | + |
| 89 | + |
| 90 | +output_noise = 'sin_wave_with_noise_6dB.wav' |
| 91 | +with wave.open(output_noise, 'w') as wf: |
| 92 | + wf.setnchannels(1) |
| 93 | + wf.setsampwidth(2) |
| 94 | + wf.setframerate(samp_rate) |
| 95 | + wf.writeframes((noise_signal * 32767).astype(np.int16).tobytes()) |
| 96 | + |
| 97 | + |
| 98 | +#1-9 |
| 99 | +from scipy.io import wavfile |
| 100 | + |
| 101 | +rate, data = wavfile.read(output_noise) |
| 102 | + |
| 103 | + |
| 104 | +downsampled_data = data[::2] |
| 105 | + |
| 106 | + |
| 107 | +output_downsampled = 'downsampled_8kHz.wav' |
| 108 | +wavfile.write(output_downsampled, 8000, downsampled_data.astype(np.int16)) |
| 109 | + |
| 110 | +#1-10 |
| 111 | +filtered_signal = np.convolve(downsampled_data, np.ones(5)/5, mode='valid') |
| 112 | + |
| 113 | +plt.figure(figsize=(14, 6)) |
| 114 | +plt.subplot(2, 1, 1) |
| 115 | +plt.plot(downsampled_data[:1000]) |
| 116 | +plt.title("Original Downsampled Signal (8 kHz)") |
| 117 | +plt.xlabel("Sample") |
| 118 | +plt.ylabel("Amplitude") |
| 119 | + |
| 120 | +plt.subplot(2, 1, 2) |
| 121 | +plt.plot(filtered_signal[:1000]) |
| 122 | +plt.title("Filtered Signal (5-point Moving Average)") |
| 123 | +plt.xlabel("Sample") |
| 124 | +plt.ylabel("Amplitude") |
| 125 | + |
| 126 | +plt.tight_layout() |
| 127 | +plt.show() |
0 commit comments