-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_parallel.py
375 lines (291 loc) · 12.2 KB
/
run_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
'''
This script provides a wrapper for code to be run in parallel. Using this
wrapper provides the following advantages:
* Leverage git to provide commit identifier for code that run the simulation
* Tag the results with the associated git commit sha
* Saves the arguments and the parameters along the results
* Save the results as they are generated, not at the end
* Save the results in readable JSON format
* Decouple computation and presentation (aka simulation and plot generation)
The code is defined in a separate file and should
define the following:
* A dictionary of simulation parameters that
are global to all instances.
* A list of args, tuples that will be provided
to the function to be run in parallel.
* A function named 'parallel_loop' that will
be run in parallel with different parameters.
Dependencies:
* gitpython
* ipyparallel
'''
from __future__ import division, print_function
import argparse, datetime
import os, time, git, json, sys
import collections
import math
data_dir_format = '{date}_{name}{tag}/'
data_file_format = 'data_{pid}.json'
error_file_format = 'error_{pid}.json'
data_dir = None
data_file = 'data.json'
param_file = 'parameters.json'
args_file = 'arguments.json'
def json_append(filename, entry):
'''
This function incrementally add entries to a json file
while keeping the format correct
Parameters
----------
filename: str
the name of the JSON file
entry:
the new entry to append
'''
import json
with open(filename, 'at') as f:
if f.tell() == 0:
# first write, add array
json.dump([entry], f, indent=0)
else:
# remove last character ']' and '\n'
f.seek(f.tell() - 2, 0)
f.truncate()
# add missing comma to previous element
f.write(',\n')
# dump the latest entry
json.dump(entry, f, indent=0)
# close the json file
f.write('\n]')
def run(func_parallel_loop, func_gen_args, func_init=None, base_dir=None, results_dir=None, description=None):
'''
Runs the simulation
Parameters
----------
func_parallel_loop: function
The function that should be parallelized
func_gen_args: function
The function that will generate all the different inputs
for func_parallel_loop
func_init: function, optional
A function that will be run before the simulation starts. This might
generate some data or import some files for example
base_dir: str, optional
The location of the base directory for the simulation
results_dir: str, optional
The name of the directory where to save results
description: str, optional
A short description of the simulation for the help function
'''
import os, json
if description is None:
description = 'Generic simulation script'
if base_dir is None:
base_dir = './'
base_dir = os.path.abspath(base_dir)
if results_dir is None:
results_dir = os.path.join(base_dir, 'data/')
elif not os.path.isabs(results_dir):
results_dir = os.path.join(base_dir, results_dir)
parser = argparse.ArgumentParser(description=description)
parser.add_argument('-d', '--dir', type=str, help='directory to store sim results')
parser.add_argument('-p', '--profile', type=str, help='ipython profile of cluster')
parser.add_argument('-t', '--test', action='store_true', help='test mode, runs a single loop of the simulation')
parser.add_argument('-s', '--serial', action='store_true', help='run in a serial loop, ipyparallel not called')
parser.add_argument('--dummy', action='store_true', help='tags the directory as dummy, can be used for running small batches')
parser.add_argument('parameters', type=str, help='JSON file containing simulation parameters')
cli_args = parser.parse_args()
ipcluster_profile = cli_args.profile
test_flag = cli_args.test
serial_flag = cli_args.serial
dummy_flag = cli_args.dummy
data_dir_name = None
parameter_file = cli_args.parameters
# Check the state of the github repository
try:
repo = git.Repo(base_dir, search_parent_directories=True)
if repo.is_dirty():
if test_flag:
import warnings
warnings.warn('The git repo has uncommited modifications. Going ahead for test.')
else:
raise ValueError('The git repo has uncommited modifications. Aborting simulation.')
except git.InvalidGitRepositoryError:
repo = None
# tag with git sha, or test
if dummy_flag:
tag = 'dummy'
elif test_flag:
tag = 'test'
else:
if repo is not None:
# 10 first digits of sha
tag = repo.head.commit.hexsha[:10]
else:
tag = ''
# get all the parameters
with open(parameter_file, 'r') as f:
parameters = json.load(f)
# if no name is given, use the parameters file name
if 'name' not in parameters:
name = os.path.splitext(os.path.basename(parameter_file))[0]
parameters['name'] = name
else:
name = parameters['name']
# record date and time
date = time.strftime("%Y%m%d-%H%M%S")
# for convenient access to parameters:
p = collections.namedtuple('Struct', parameters.keys())(*parameters.values())
# Save the result to a directory
if data_dir_name is None:
ttag = '_' + tag if tag != '' else tag
data_dir = os.path.join(results_dir, data_dir_format.format(date=date, name=name, tag=ttag))
else:
data_dir = data_dir_name
data_file_name = os.path.join(data_dir, data_file)
# create directory if it doesn't exist
try:
os.mkdir(data_dir)
except:
if not os.path.exists(data_dir):
raise ValueError('Couldn''t create the data directory')
else:
pass
# add a few practical things to the parameters
parameters['_git_sha'] = tag
parameters['_date'] = date
parameters['_base_dir'] = base_dir
parameters['_results_dir'] = data_dir
parameters['_parallel'] = not serial_flag
# Save the arguments in a json file
param_file_name = os.path.join(data_dir, param_file)
with open(param_file_name, "w") as f:
json.dump(parameters, f, indent=2)
f.close()
# run the user provided init method
if func_init is not None:
func_init(parameters)
# generate all the arguments to simulate
arguments = func_gen_args(parameters)
# Save the arguments in a json file
args_file_name = os.path.join(data_dir, args_file)
with open(args_file_name, "w") as f:
json.dump(arguments, f, indent=0)
f.close()
# There is the option to only run one loop for test
if test_flag:
print('Running one test loop only.')
arguments = arguments[:2]
# Prepare a few things for the status line
n_tasks = len(arguments)
digits = int(math.log10(n_tasks) + 1)
dformat = '{:' + str(digits) + 'd}'
status_line = (' ' + dformat + '/'
+ dformat + (' tasks done. '
'Forecast end {:>20s}. '
'Ellapsed: {:>8s} Remaining: {:>8s}'))
print('/!\\ the time estimate will only be correct '
'when all tasks take about the same time to finish /!\\')
forecast = 'NA'
time_remaining = 'NA'
# Main processing loop
if serial_flag:
# add parameters to builtins so that it is accessible in the namespace
# of the calling script
import builtins
builtins.parameters = parameters
print('Running everything in a serial loop.')
# record start timestamp
then = time.time()
start_time = datetime.datetime.now()
# Serial processing
for i,ag in enumerate(arguments):
result = func_parallel_loop(ag)
# save the new result!
json_append(data_file_name, result)
# Now format some timing estimation
n_remaining = n_tasks - (i+1)
ellapsed = int(time.time() - then)
ellapsed_fmt = '{:02}:{:02}:{:02}'.format(
ellapsed // 3600, ellapsed % 3600 // 60, ellapsed % 60)
# estimate remaining time
if ellapsed > 0:
rate = (i+1) / ellapsed # tasks per second
delta_finish_min = int(rate * n_remaining / 60) + 1
tdelta = datetime.timedelta(minutes=delta_finish_min)
end_date = datetime.datetime.now() + tdelta
# convert to strings
forecast = end_date.strftime('%Y-%m-%d %H:%M:%S')
s = int(tdelta.total_seconds())
time_remaining = '{:02}:{:02}:{:02}'.format(s // 3600, s % 3600 // 60, s % 60)
formatted_status_line = status_line.format(i+1, n_tasks,
forecast, ellapsed_fmt, time_remaining)
print(formatted_status_line, end='\r')
# clean the output
print(' ' * len(formatted_status_line))
all_loops = int(time.time() - then)
all_loops_format = '{:02}:{:02}:{:02}'.format(
all_loops // 3600, all_loops % 3600 // 60, all_loops % 60)
print('Total actual processing time: {} ({} s)'.format(all_loops_format, all_loops))
else:
# Parallel processing code
import ipyparallel as ip
print('Using ipyparallel processing.')
# Start the parallel processing
c = ip.Client(profile=ipcluster_profile)
NC = len(c.ids)
print(NC, 'workers on the job')
# Clear the engines namespace
c.clear(block=True)
# Push the global config to the workers
var_space = dict(
parameters = parameters,
)
c[:].push(var_space, block=True)
# record start timestamp
then = time.time()
start_time = datetime.datetime.now()
# use a load balanced view
lbv = c.load_balanced_view()
# dispatch to workers
ar = lbv.map_async(func_parallel_loop, arguments)
# We use a try here so that if something happens,
# we can catch it and abort the jobs on all engines
try:
for i, result in enumerate(ar):
# save the new result!
json_append(data_file_name, result)
# Now format some timing estimation
n_remaining = n_tasks - ar.progress
ellapsed = int(time.time() - then)
ellapsed_fmt = '{:02}:{:02}:{:02}'.format(
ellapsed // 3600, ellapsed % 3600 // 60, round(ellapsed % 60))
if ar.progress > NC and n_remaining > NC:
# estimate remaining time
rate = ar.progress / ellapsed # tasks per second
delta_finish_min = int(rate * n_remaining / 60) + 1
tdelta = datetime.timedelta(minutes=delta_finish_min)
end_date = datetime.datetime.now() + tdelta
# convert to strings
forecast = end_date.strftime('%Y-%m-%d %H:%M:%S')
s = int(tdelta.total_seconds())
time_remaining = '{:02}:{:02}:{:02}'.format(s // 3600, s % 3600 // 60, s % 60)
formatted_status_line = status_line.format(ar.progress, n_tasks,
forecast, ellapsed_fmt, time_remaining)
print(formatted_status_line, end='\r')
# clean the output
print(' ' * len(formatted_status_line))
print('Show all output from nodes, if any:')
ar.display_outputs()
except:
# so here, things went south. Show the traceback
# and abort all the jobs scheduled
import traceback
traceback.print_exc()
print('Aborting all remaining jobs...')
c.abort(block=True)
all_loops = int(time.time() - then)
all_loops_format = '{:02}:{:02}:{:02}'.format(
all_loops // 3600, all_loops % 3600 // 60, all_loops % 60)
print('Total actual processing time: {} ({} s)'.format(all_loops_format, all_loops))
print('Saved data to folder: ' + data_dir)