Skip to content

spcl+在UDA上不能复现结果 #41

@keenJMS

Description

@keenJMS

葛博,你好。我用的是4卡2080Ti,pytorch1.7+cuda10.1+python3.8.5,spcl+ 在duke->msmt map只有22 ,在market->msmt只有23.3,下面是我的log文件

==========

Args:Namespace(config='SpCL/config_duke_msmt.yaml', launcher='pytorch', resume_from=None, set_cfgs=None, tcp_port='10010', work_dir='SpCL/duke_msmt/4gpu_16per/800iter')

==========
cfg.LOCAL_RANK: 0
cfg.DATA_ROOT: ../datasets
cfg.LOGS_ROOT: /data/OpenUnlogs/logs

cfg.MODEL = edict()
cfg.MODEL.backbone: resnet50
cfg.MODEL.pooling: gem
cfg.MODEL.embed_feat: 0
cfg.MODEL.dropout: 0.0
cfg.MODEL.dsbn: True
cfg.MODEL.sync_bn: True
cfg.MODEL.samples_per_bn: 16
cfg.MODEL.mean_net: False
cfg.MODEL.alpha: 0.999
cfg.MODEL.imagenet_pretrained: True
cfg.MODEL.source_pretrained: None

cfg.DATA = edict()
cfg.DATA.height: 256
cfg.DATA.width: 128
cfg.DATA.norm_mean: [0.485, 0.456, 0.406]
cfg.DATA.norm_std: [0.229, 0.224, 0.225]

cfg.DATA.TRAIN = edict()
cfg.DATA.TRAIN.is_autoaug: False
cfg.DATA.TRAIN.is_flip: True
cfg.DATA.TRAIN.flip_prob: 0.5
cfg.DATA.TRAIN.is_pad: True
cfg.DATA.TRAIN.pad_size: 10
cfg.DATA.TRAIN.is_blur: False
cfg.DATA.TRAIN.blur_prob: 0.5
cfg.DATA.TRAIN.is_erase: True
cfg.DATA.TRAIN.erase_prob: 0.5
cfg.DATA.TRAIN.is_mutual_transform: False
cfg.DATA.TRAIN.mutual_times: 2

cfg.TRAIN = edict()
cfg.TRAIN.seed: 1
cfg.TRAIN.deterministic: True
cfg.TRAIN.amp: False

cfg.TRAIN.datasets = edict()
cfg.TRAIN.datasets.msmt17: trainval
cfg.TRAIN.datasets.dukemtmcreid: trainval
cfg.TRAIN.unsup_dataset_indexes: [0]
cfg.TRAIN.epochs: 50
cfg.TRAIN.iters: 800

cfg.TRAIN.LOSS = edict()

cfg.TRAIN.LOSS.losses = edict()
cfg.TRAIN.LOSS.losses.hybrid_memory: 1.0
cfg.TRAIN.LOSS.temp: 0.05
cfg.TRAIN.LOSS.momentum: 0.2
cfg.TRAIN.val_dataset: msmt17
cfg.TRAIN.val_freq: 5

cfg.TRAIN.SAMPLER = edict()
cfg.TRAIN.SAMPLER.num_instances: 4
cfg.TRAIN.SAMPLER.is_shuffle: True

cfg.TRAIN.LOADER = edict()
cfg.TRAIN.LOADER.samples_per_gpu: 16
cfg.TRAIN.LOADER.workers_per_gpu: 2

cfg.TRAIN.PSEUDO_LABELS = edict()
cfg.TRAIN.PSEUDO_LABELS.freq: 1
cfg.TRAIN.PSEUDO_LABELS.use_outliers: True
cfg.TRAIN.PSEUDO_LABELS.norm_feat: True
cfg.TRAIN.PSEUDO_LABELS.norm_center: True
cfg.TRAIN.PSEUDO_LABELS.cluster: dbscan
cfg.TRAIN.PSEUDO_LABELS.eps: [0.58, 0.6, 0.62]
cfg.TRAIN.PSEUDO_LABELS.min_samples: 4
cfg.TRAIN.PSEUDO_LABELS.dist_metric: jaccard
cfg.TRAIN.PSEUDO_LABELS.k1: 30
cfg.TRAIN.PSEUDO_LABELS.k2: 6
cfg.TRAIN.PSEUDO_LABELS.search_type: 0
cfg.TRAIN.PSEUDO_LABELS.cluster_num: None

cfg.TRAIN.OPTIM = edict()
cfg.TRAIN.OPTIM.optim: adam
cfg.TRAIN.OPTIM.lr: 0.00035
cfg.TRAIN.OPTIM.weight_decay: 0.0005

cfg.TRAIN.SCHEDULER = edict()
cfg.TRAIN.SCHEDULER.lr_scheduler: single_step
cfg.TRAIN.SCHEDULER.stepsize: 20
cfg.TRAIN.SCHEDULER.gamma: 0.1

cfg.TEST = edict()
cfg.TEST.datasets: ['msmt17']

cfg.TEST.LOADER = edict()
cfg.TEST.LOADER.samples_per_gpu: 32
cfg.TEST.LOADER.workers_per_gpu: 2
cfg.TEST.dist_metric: euclidean
cfg.TEST.norm_feat: True
cfg.TEST.dist_cuda: True
cfg.TEST.rerank: False
cfg.TEST.search_type: 0
cfg.TEST.k1: 20
cfg.TEST.k2: 6
cfg.TEST.lambda_value: 0.3
cfg.launcher: pytorch
cfg.tcp_port: 10010
cfg.work_dir: /data/OpenUnlogs/logs/SpCL/duke_msmt/4gpu_16per/800iter
cfg.rank: 0
cfg.ngpus_per_node: 4
cfg.gpu: 0
cfg.total_gpus: 4
cfg.world_size: 4
The training is in a un/semi-supervised manner with 2 dataset(s) (['msmt17', 'dukemtmcreid']),
where ['msmt17'] have no labels.

Mean AP: 22.0%
CMC Scores:
top-1 46.6%
top-5 59.3%
top-10 64.6%
Testing time: 0:03:25.443005

******************************* Finished testing *******************************

Total running time: 5:10:33.865417

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions