-
Notifications
You must be signed in to change notification settings - Fork 991
/
Copy pathprocessors.py
258 lines (211 loc) · 9.38 KB
/
processors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from __future__ import annotations
import os
import queue
import random
import threading
import time
from typing import Any
import httpx
from ..logger import logger
from .processor_interface import TracingExporter, TracingProcessor
from .spans import Span
from .traces import Trace
class ConsoleSpanExporter(TracingExporter):
"""Prints the traces and spans to the console."""
def export(self, items: list[Trace | Span[Any]]) -> None:
for item in items:
if isinstance(item, Trace):
print(f"[Exporter] Export trace_id={item.trace_id}, name={item.name}, ")
else:
print(f"[Exporter] Export span: {item.export()}")
class BackendSpanExporter(TracingExporter):
def __init__(
self,
api_key: str | None = None,
organization: str | None = None,
project: str | None = None,
endpoint: str = "https://api.openai.com/v1/traces/ingest",
max_retries: int = 3,
base_delay: float = 1.0,
max_delay: float = 30.0,
):
"""
Args:
api_key: The API key for the "Authorization" header. Defaults to
`os.environ["OPENAI_TRACE_API_KEY"]` if not provided.
organization: The OpenAI organization to use. Defaults to
`os.environ["OPENAI_ORG_ID"]` if not provided.
project: The OpenAI project to use. Defaults to
`os.environ["OPENAI_PROJECT_ID"]` if not provided.
endpoint: The HTTP endpoint to which traces/spans are posted.
max_retries: Maximum number of retries upon failures.
base_delay: Base delay (in seconds) for the first backoff.
max_delay: Maximum delay (in seconds) for backoff growth.
"""
self.api_key = api_key or os.environ.get("OPENAI_API_KEY")
self.organization = organization or os.environ.get("OPENAI_ORG_ID")
self.project = project or os.environ.get("OPENAI_PROJECT_ID")
self.endpoint = endpoint
self.max_retries = max_retries
self.base_delay = base_delay
self.max_delay = max_delay
# Keep a client open for connection pooling across multiple export calls
self._client = httpx.Client(timeout=httpx.Timeout(timeout=60, connect=5.0))
def set_api_key(self, api_key: str):
"""Set the OpenAI API key for the exporter.
Args:
api_key: The OpenAI API key to use. This is the same key used by the OpenAI Python
client.
"""
self.api_key = api_key
def export(self, items: list[Trace | Span[Any]]) -> None:
if not items:
return
if not self.api_key:
logger.warning("OPENAI_API_KEY is not set, skipping trace export")
return
data = [item.export() for item in items if item.export()]
payload = {"data": data}
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"OpenAI-Beta": "traces=v1",
}
# Exponential backoff loop
attempt = 0
delay = self.base_delay
while True:
attempt += 1
try:
response = self._client.post(url=self.endpoint, headers=headers, json=payload)
# If the response is successful, break out of the loop
if response.status_code < 300:
logger.debug(f"Exported {len(items)} items")
return
# If the response is a client error (4xx), we wont retry
if 400 <= response.status_code < 500:
logger.error(f"Tracing client error {response.status_code}: {response.text}")
return
# For 5xx or other unexpected codes, treat it as transient and retry
logger.warning(f"Server error {response.status_code}, retrying.")
except httpx.RequestError as exc:
# Network or other I/O error, we'll retry
logger.warning(f"Request failed: {exc}")
# If we reach here, we need to retry or give up
if attempt >= self.max_retries:
logger.error("Max retries reached, giving up on this batch.")
return
# Exponential backoff + jitter
sleep_time = delay + random.uniform(0, 0.1 * delay) # 10% jitter
time.sleep(sleep_time)
delay = min(delay * 2, self.max_delay)
def close(self):
"""Close the underlying HTTP client."""
self._client.close()
class BatchTraceProcessor(TracingProcessor):
"""Some implementation notes:
1. Using Queue, which is thread-safe.
2. Using a background thread to export spans, to minimize any performance issues.
3. Spans are stored in memory until they are exported.
"""
def __init__(
self,
exporter: TracingExporter,
max_queue_size: int = 8192,
max_batch_size: int = 128,
schedule_delay: float = 5.0,
export_trigger_ratio: float = 0.7,
):
"""
Args:
exporter: The exporter to use.
max_queue_size: The maximum number of spans to store in the queue. After this, we will
start dropping spans.
max_batch_size: The maximum number of spans to export in a single batch.
schedule_delay: The delay between checks for new spans to export.
export_trigger_ratio: The ratio of the queue size at which we will trigger an export.
"""
self._exporter = exporter
self._queue: queue.Queue[Trace | Span[Any]] = queue.Queue(maxsize=max_queue_size)
self._max_queue_size = max_queue_size
self._max_batch_size = max_batch_size
self._schedule_delay = schedule_delay
self._shutdown_event = threading.Event()
# The queue size threshold at which we export immediately.
self._export_trigger_size = int(max_queue_size * export_trigger_ratio)
# Track when we next *must* perform a scheduled export
self._next_export_time = time.time() + self._schedule_delay
self._shutdown_event = threading.Event()
self._worker_thread = threading.Thread(target=self._run, daemon=True)
self._worker_thread.start()
def on_trace_start(self, trace: Trace) -> None:
try:
self._queue.put_nowait(trace)
except queue.Full:
logger.warning("Queue is full, dropping trace.")
def on_trace_end(self, trace: Trace) -> None:
# We send traces via on_trace_start, so we don't need to do anything here.
pass
def on_span_start(self, span: Span[Any]) -> None:
# We send spans via on_span_end, so we don't need to do anything here.
pass
def on_span_end(self, span: Span[Any]) -> None:
try:
self._queue.put_nowait(span)
except queue.Full:
logger.warning("Queue is full, dropping span.")
def shutdown(self, timeout: float | None = None):
"""
Called when the application stops. We signal our thread to stop, then join it.
"""
self._shutdown_event.set()
self._worker_thread.join(timeout=timeout)
def force_flush(self):
"""
Forces an immediate flush of all queued spans.
"""
self._export_batches(force=True)
def _run(self):
while not self._shutdown_event.is_set():
current_time = time.time()
queue_size = self._queue.qsize()
# If it's time for a scheduled flush or queue is above the trigger threshold
if current_time >= self._next_export_time or queue_size >= self._export_trigger_size:
self._export_batches(force=False)
# Reset the next scheduled flush time
self._next_export_time = time.time() + self._schedule_delay
else:
# Sleep a short interval so we don't busy-wait.
time.sleep(0.2)
# Final drain after shutdown
self._export_batches(force=True)
def _export_batches(self, force: bool = False):
"""Drains the queue and exports in batches. If force=True, export everything.
Otherwise, export up to `max_batch_size` repeatedly until the queue is empty or below a
certain threshold.
"""
while True:
items_to_export: list[Span[Any] | Trace] = []
# Gather a batch of spans up to max_batch_size
while not self._queue.empty() and (
force or len(items_to_export) < self._max_batch_size
):
try:
items_to_export.append(self._queue.get_nowait())
except queue.Empty:
# Another thread might have emptied the queue between checks
break
# If we collected nothing, we're done
if not items_to_export:
break
# Export the batch
self._exporter.export(items_to_export)
# Create a shared global instance:
_global_exporter = BackendSpanExporter()
_global_processor = BatchTraceProcessor(_global_exporter)
def default_exporter() -> BackendSpanExporter:
"""The default exporter, which exports traces and spans to the backend in batches."""
return _global_exporter
def default_processor() -> BatchTraceProcessor:
"""The default processor, which exports traces and spans to the backend in batches."""
return _global_processor