-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathfunction_schema.py
350 lines (293 loc) · 12.8 KB
/
function_schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from __future__ import annotations
import contextlib
import inspect
import logging
import re
from dataclasses import dataclass
from typing import Any, Callable, Literal, get_args, get_origin, get_type_hints
from griffe import Docstring, DocstringSectionKind
from pydantic import BaseModel, Field, create_model
from .exceptions import UserError
from .run_context import RunContextWrapper
from .strict_schema import ensure_strict_json_schema
@dataclass
class FuncSchema:
"""
Captures the schema for a python function, in preparation for sending it to an LLM as a tool.
"""
name: str
"""The name of the function."""
description: str | None
"""The description of the function."""
params_pydantic_model: type[BaseModel]
"""A Pydantic model that represents the function's parameters."""
params_json_schema: dict[str, Any]
"""The JSON schema for the function's parameters, derived from the Pydantic model."""
signature: inspect.Signature
"""The signature of the function."""
takes_context: bool = False
"""Whether the function takes a RunContextWrapper argument (must be the first argument)."""
strict_json_schema: bool = True
"""Whether the JSON schema is in strict mode. We **strongly** recommend setting this to True,
as it increases the likelihood of correct JSON input."""
def to_call_args(self, data: BaseModel) -> tuple[list[Any], dict[str, Any]]:
"""
Converts validated data from the Pydantic model into (args, kwargs), suitable for calling
the original function.
"""
positional_args: list[Any] = []
keyword_args: dict[str, Any] = {}
seen_var_positional = False
# Use enumerate() so we can skip the first parameter if it's context.
for idx, (name, param) in enumerate(self.signature.parameters.items()):
# If the function takes a RunContextWrapper and this is the first parameter, skip it.
if self.takes_context and idx == 0:
continue
value = getattr(data, name, None)
if param.kind == param.VAR_POSITIONAL:
# e.g. *args: extend positional args and mark that *args is now seen
positional_args.extend(value or [])
seen_var_positional = True
elif param.kind == param.VAR_KEYWORD:
# e.g. **kwargs handling
keyword_args.update(value or {})
elif param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
# Before *args, add to positional args. After *args, add to keyword args.
if not seen_var_positional:
positional_args.append(value)
else:
keyword_args[name] = value
else:
# For KEYWORD_ONLY parameters, always use keyword args.
keyword_args[name] = value
return positional_args, keyword_args
@dataclass
class FuncDocumentation:
"""Contains metadata about a python function, extracted from its docstring."""
name: str
"""The name of the function, via `__name__`."""
description: str | None
"""The description of the function, derived from the docstring."""
param_descriptions: dict[str, str] | None
"""The parameter descriptions of the function, derived from the docstring."""
DocstringStyle = Literal["google", "numpy", "sphinx"]
# As of Feb 2025, the automatic style detection in griffe is an Insiders feature. This
# code approximates it.
def _detect_docstring_style(doc: str) -> DocstringStyle:
scores: dict[DocstringStyle, int] = {"sphinx": 0, "numpy": 0, "google": 0}
# Sphinx style detection: look for :param, :type, :return:, and :rtype:
sphinx_patterns = [r"^:param\s", r"^:type\s", r"^:return:", r"^:rtype:"]
for pattern in sphinx_patterns:
if re.search(pattern, doc, re.MULTILINE):
scores["sphinx"] += 1
# Numpy style detection: look for headers like 'Parameters', 'Returns', or 'Yields' followed by
# a dashed underline
numpy_patterns = [
r"^Parameters\s*\n\s*-{3,}",
r"^Returns\s*\n\s*-{3,}",
r"^Yields\s*\n\s*-{3,}",
]
for pattern in numpy_patterns:
if re.search(pattern, doc, re.MULTILINE):
scores["numpy"] += 1
# Google style detection: look for section headers with a trailing colon
google_patterns = [r"^(Args|Arguments):", r"^(Returns):", r"^(Raises):"]
for pattern in google_patterns:
if re.search(pattern, doc, re.MULTILINE):
scores["google"] += 1
max_score = max(scores.values())
if max_score == 0:
return "google"
# Priority order: sphinx > numpy > google in case of tie
styles: list[DocstringStyle] = ["sphinx", "numpy", "google"]
for style in styles:
if scores[style] == max_score:
return style
return "google"
@contextlib.contextmanager
def _suppress_griffe_logging():
# Supresses warnings about missing annotations for params
logger = logging.getLogger("griffe")
previous_level = logger.getEffectiveLevel()
logger.setLevel(logging.ERROR)
try:
yield
finally:
logger.setLevel(previous_level)
def generate_func_documentation(
func: Callable[..., Any], style: DocstringStyle | None = None
) -> FuncDocumentation:
"""
Extracts metadata from a function docstring, in preparation for sending it to an LLM as a tool.
Args:
func: The function to extract documentation from.
style: The style of the docstring to use for parsing. If not provided, we will attempt to
auto-detect the style.
Returns:
A FuncDocumentation object containing the function's name, description, and parameter
descriptions.
"""
name = func.__name__
doc = inspect.getdoc(func)
if not doc:
return FuncDocumentation(name=name, description=None, param_descriptions=None)
with _suppress_griffe_logging():
docstring = Docstring(doc, lineno=1, parser=style or _detect_docstring_style(doc))
parsed = docstring.parse()
description: str | None = next(
(section.value for section in parsed if section.kind == DocstringSectionKind.text), None
)
param_descriptions: dict[str, str] = {
param.name: param.description
for section in parsed
if section.kind == DocstringSectionKind.parameters
for param in section.value
}
return FuncDocumentation(
name=func.__name__,
description=description,
param_descriptions=param_descriptions or None,
)
def function_schema(
func: Callable[..., Any],
docstring_style: DocstringStyle | None = None,
name_override: str | None = None,
description_override: str | None = None,
use_docstring_info: bool = True,
strict_json_schema: bool = True,
) -> FuncSchema:
"""
Given a python function, extracts a `FuncSchema` from it, capturing the name, description,
parameter descriptions, and other metadata.
Args:
func: The function to extract the schema from.
docstring_style: The style of the docstring to use for parsing. If not provided, we will
attempt to auto-detect the style.
name_override: If provided, use this name instead of the function's `__name__`.
description_override: If provided, use this description instead of the one derived from the
docstring.
use_docstring_info: If True, uses the docstring to generate the description and parameter
descriptions.
strict_json_schema: Whether the JSON schema is in strict mode. If True, we'll ensure that
the schema adheres to the "strict" standard the OpenAI API expects. We **strongly**
recommend setting this to True, as it increases the likelihood of the LLM providing
correct JSON input.
Returns:
A `FuncSchema` object containing the function's name, description, parameter descriptions,
and other metadata.
"""
# 1. Grab docstring info
if use_docstring_info:
doc_info = generate_func_documentation(func, docstring_style)
param_descs = doc_info.param_descriptions or {}
else:
doc_info = None
param_descs = {}
func_name = name_override or doc_info.name if doc_info else func.__name__
# 2. Inspect function signature and get type hints
sig = inspect.signature(func)
type_hints = get_type_hints(func)
params = list(sig.parameters.items())
takes_context = False
filtered_params = []
# Helper function to check if a parameter is a special method parameter
def is_special_param(name: str) -> bool:
return name in ("self", "cls")
# Helper function to check if a parameter is a context parameter
def is_context_param(name: str, param: inspect.Parameter) -> bool:
ann = type_hints.get(name, param.annotation)
if ann != inspect._empty:
origin = get_origin(ann) or ann
return origin is RunContextWrapper
return False
if params:
first_name, first_param = params[0]
# Handle special first parameter cases
if is_context_param(first_name, first_param):
takes_context = True
elif not is_special_param(first_name):
filtered_params.append((first_name, first_param))
# For parameters other than the first, handle special cases and context
for name, param in params[1:]:
if is_context_param(name, param):
raise UserError(
f"RunContextWrapper param found at non-first position in function"
f" {func.__name__}"
)
if not is_special_param(name):
filtered_params.append((name, param))
# We will collect field definitions for create_model as a dict:
# field_name -> (type_annotation, default_value_or_Field(...))
fields: dict[str, Any] = {}
for name, param in filtered_params:
ann = type_hints.get(name, param.annotation)
default = param.default
# If there's no type hint, assume `Any`
if ann == inspect._empty:
ann = Any
# If a docstring param description exists, use it
field_description = param_descs.get(name, None)
# Handle different parameter kinds
if param.kind == param.VAR_POSITIONAL:
# e.g. *args: extend positional args
if get_origin(ann) is tuple:
# e.g. def foo(*args: tuple[int, ...]) -> treat as List[int]
args_of_tuple = get_args(ann)
if len(args_of_tuple) == 2 and args_of_tuple[1] is Ellipsis:
ann = list[args_of_tuple[0]] # type: ignore
else:
ann = list[Any]
else:
# If user wrote *args: int, treat as List[int]
ann = list[ann] # type: ignore
# Default factory to empty list
fields[name] = (
ann,
Field(default_factory=list, description=field_description), # type: ignore
)
elif param.kind == param.VAR_KEYWORD:
# **kwargs handling
if get_origin(ann) is dict:
# e.g. def foo(**kwargs: dict[str, int])
dict_args = get_args(ann)
if len(dict_args) == 2:
ann = dict[dict_args[0], dict_args[1]] # type: ignore
else:
ann = dict[str, Any]
else:
# e.g. def foo(**kwargs: int) -> Dict[str, int]
ann = dict[str, ann] # type: ignore
fields[name] = (
ann,
Field(default_factory=dict, description=field_description), # type: ignore
)
else:
# Normal parameter
if default == inspect._empty:
# Required field
fields[name] = (
ann,
Field(..., description=field_description),
)
else:
# Parameter with a default value
fields[name] = (
ann,
Field(default=default, description=field_description),
)
# 3. Dynamically build a Pydantic model
dynamic_model = create_model(f"{func_name}_args", __base__=BaseModel, **fields)
# 4. Build JSON schema from that model
json_schema = dynamic_model.model_json_schema()
if strict_json_schema:
json_schema = ensure_strict_json_schema(json_schema)
# 5. Return as a FuncSchema dataclass
return FuncSchema(
name=func_name,
description=description_override or doc_info.description if doc_info else None,
params_pydantic_model=dynamic_model,
params_json_schema=json_schema,
signature=sig,
takes_context=takes_context,
strict_json_schema=strict_json_schema,
)