diff --git a/examples/financial_research_agent/README.md b/examples/financial_research_agent/README.md new file mode 100644 index 00000000..756ade6e --- /dev/null +++ b/examples/financial_research_agent/README.md @@ -0,0 +1,38 @@ +# Financial Research Agent Example + +This example shows how you might compose a richer financial research agent using the Agents SDK. The pattern is similar to the `research_bot` example, but with more specialized sub‑agents and a verification step. + +The flow is: + +1. **Planning**: A planner agent turns the end user’s request into a list of search terms relevant to financial analysis – recent news, earnings calls, corporate filings, industry commentary, etc. +2. **Search**: A search agent uses the built‑in `WebSearchTool` to retrieve terse summaries for each search term. (You could also add `FileSearchTool` if you have indexed PDFs or 10‑Ks.) +3. **Sub‑analysts**: Additional agents (e.g. a fundamentals analyst and a risk analyst) are exposed as tools so the writer can call them inline and incorporate their outputs. +4. **Writing**: A senior writer agent brings together the search snippets and any sub‑analyst summaries into a long‑form markdown report plus a short executive summary. +5. **Verification**: A final verifier agent audits the report for obvious inconsistencies or missing sourcing. + +You can run the example with: + +```bash +python -m examples.financial_research_agent.main +``` + +and enter a query like: + +``` +Write up an analysis of Apple Inc.'s most recent quarter. +``` + +### Starter prompt + +The writer agent is seeded with instructions similar to: + +``` +You are a senior financial analyst. You will be provided with the original query +and a set of raw search summaries. Your job is to synthesize these into a +long‑form markdown report (at least several paragraphs) with a short executive +summary. You also have access to tools like `fundamentals_analysis` and +`risk_analysis` to get short specialist write‑ups if you want to incorporate them. +Add a few follow‑up questions for further research. +``` + +You can tweak these prompts and sub‑agents to suit your own data sources and preferred report structure. diff --git a/examples/financial_research_agent/__init__.py b/examples/financial_research_agent/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/financial_research_agent/agents/__init__.py b/examples/financial_research_agent/agents/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/examples/financial_research_agent/agents/financials_agent.py b/examples/financial_research_agent/agents/financials_agent.py new file mode 100644 index 00000000..953531f2 --- /dev/null +++ b/examples/financial_research_agent/agents/financials_agent.py @@ -0,0 +1,23 @@ +from pydantic import BaseModel + +from agents import Agent + +# A sub‑agent focused on analyzing a company's fundamentals. +FINANCIALS_PROMPT = ( + "You are a financial analyst focused on company fundamentals such as revenue, " + "profit, margins and growth trajectory. Given a collection of web (and optional file) " + "search results about a company, write a concise analysis of its recent financial " + "performance. Pull out key metrics or quotes. Keep it under 2 paragraphs." +) + + +class AnalysisSummary(BaseModel): + summary: str + """Short text summary for this aspect of the analysis.""" + + +financials_agent = Agent( + name="FundamentalsAnalystAgent", + instructions=FINANCIALS_PROMPT, + output_type=AnalysisSummary, +) diff --git a/examples/financial_research_agent/agents/planner_agent.py b/examples/financial_research_agent/agents/planner_agent.py new file mode 100644 index 00000000..14aaa0b1 --- /dev/null +++ b/examples/financial_research_agent/agents/planner_agent.py @@ -0,0 +1,35 @@ +from pydantic import BaseModel + +from agents import Agent + +# Generate a plan of searches to ground the financial analysis. +# For a given financial question or company, we want to search for +# recent news, official filings, analyst commentary, and other +# relevant background. +PROMPT = ( + "You are a financial research planner. Given a request for financial analysis, " + "produce a set of web searches to gather the context needed. Aim for recent " + "headlines, earnings calls or 10‑K snippets, analyst commentary, and industry background. " + "Output between 5 and 15 search terms to query for." +) + + +class FinancialSearchItem(BaseModel): + reason: str + """Your reasoning for why this search is relevant.""" + + query: str + """The search term to feed into a web (or file) search.""" + + +class FinancialSearchPlan(BaseModel): + searches: list[FinancialSearchItem] + """A list of searches to perform.""" + + +planner_agent = Agent( + name="FinancialPlannerAgent", + instructions=PROMPT, + model="o3-mini", + output_type=FinancialSearchPlan, +) diff --git a/examples/financial_research_agent/agents/risk_agent.py b/examples/financial_research_agent/agents/risk_agent.py new file mode 100644 index 00000000..e24deb4e --- /dev/null +++ b/examples/financial_research_agent/agents/risk_agent.py @@ -0,0 +1,22 @@ +from pydantic import BaseModel + +from agents import Agent + +# A sub‑agent specializing in identifying risk factors or concerns. +RISK_PROMPT = ( + "You are a risk analyst looking for potential red flags in a company's outlook. " + "Given background research, produce a short analysis of risks such as competitive threats, " + "regulatory issues, supply chain problems, or slowing growth. Keep it under 2 paragraphs." +) + + +class AnalysisSummary(BaseModel): + summary: str + """Short text summary for this aspect of the analysis.""" + + +risk_agent = Agent( + name="RiskAnalystAgent", + instructions=RISK_PROMPT, + output_type=AnalysisSummary, +) diff --git a/examples/financial_research_agent/agents/search_agent.py b/examples/financial_research_agent/agents/search_agent.py new file mode 100644 index 00000000..4ef2522d --- /dev/null +++ b/examples/financial_research_agent/agents/search_agent.py @@ -0,0 +1,18 @@ +from agents import Agent, WebSearchTool +from agents.model_settings import ModelSettings + +# Given a search term, use web search to pull back a brief summary. +# Summaries should be concise but capture the main financial points. +INSTRUCTIONS = ( + "You are a research assistant specializing in financial topics. " + "Given a search term, use web search to retrieve up‑to‑date context and " + "produce a short summary of at most 300 words. Focus on key numbers, events, " + "or quotes that will be useful to a financial analyst." +) + +search_agent = Agent( + name="FinancialSearchAgent", + instructions=INSTRUCTIONS, + tools=[WebSearchTool()], + model_settings=ModelSettings(tool_choice="required"), +) diff --git a/examples/financial_research_agent/agents/verifier_agent.py b/examples/financial_research_agent/agents/verifier_agent.py new file mode 100644 index 00000000..9ae660ef --- /dev/null +++ b/examples/financial_research_agent/agents/verifier_agent.py @@ -0,0 +1,27 @@ +from pydantic import BaseModel + +from agents import Agent + +# Agent to sanity‑check a synthesized report for consistency and recall. +# This can be used to flag potential gaps or obvious mistakes. +VERIFIER_PROMPT = ( + "You are a meticulous auditor. You have been handed a financial analysis report. " + "Your job is to verify the report is internally consistent, clearly sourced, and makes " + "no unsupported claims. Point out any issues or uncertainties." +) + + +class VerificationResult(BaseModel): + verified: bool + """Whether the report seems coherent and plausible.""" + + issues: str + """If not verified, describe the main issues or concerns.""" + + +verifier_agent = Agent( + name="VerificationAgent", + instructions=VERIFIER_PROMPT, + model="gpt-4o", + output_type=VerificationResult, +) diff --git a/examples/financial_research_agent/agents/writer_agent.py b/examples/financial_research_agent/agents/writer_agent.py new file mode 100644 index 00000000..0f561006 --- /dev/null +++ b/examples/financial_research_agent/agents/writer_agent.py @@ -0,0 +1,34 @@ +from pydantic import BaseModel + +from agents import Agent + +# Writer agent brings together the raw search results and optionally calls out +# to sub‑analyst tools for specialized commentary, then returns a cohesive markdown report. +WRITER_PROMPT = ( + "You are a senior financial analyst. You will be provided with the original query and " + "a set of raw search summaries. Your task is to synthesize these into a long‑form markdown " + "report (at least several paragraphs) including a short executive summary and follow‑up " + "questions. If needed, you can call the available analysis tools (e.g. fundamentals_analysis, " + "risk_analysis) to get short specialist write‑ups to incorporate." +) + + +class FinancialReportData(BaseModel): + short_summary: str + """A short 2‑3 sentence executive summary.""" + + markdown_report: str + """The full markdown report.""" + + follow_up_questions: list[str] + """Suggested follow‑up questions for further research.""" + + +# Note: We will attach handoffs to specialist analyst agents at runtime in the manager. +# This shows how an agent can use handoffs to delegate to specialized subagents. +writer_agent = Agent( + name="FinancialWriterAgent", + instructions=WRITER_PROMPT, + model="gpt-4.5-preview-2025-02-27", + output_type=FinancialReportData, +) diff --git a/examples/financial_research_agent/main.py b/examples/financial_research_agent/main.py new file mode 100644 index 00000000..3fa8a7e0 --- /dev/null +++ b/examples/financial_research_agent/main.py @@ -0,0 +1,17 @@ +import asyncio + +from .manager import FinancialResearchManager + + +# Entrypoint for the financial bot example. +# Run this as `python -m examples.financial_bot.main` and enter a +# financial research query, for example: +# "Write up an analysis of Apple Inc.'s most recent quarter." +async def main() -> None: + query = input("Enter a financial research query: ") + mgr = FinancialResearchManager() + await mgr.run(query) + + +if __name__ == "__main__": + asyncio.run(main()) diff --git a/examples/financial_research_agent/manager.py b/examples/financial_research_agent/manager.py new file mode 100644 index 00000000..9a7722ad --- /dev/null +++ b/examples/financial_research_agent/manager.py @@ -0,0 +1,140 @@ +from __future__ import annotations + +import asyncio +import time +from collections.abc import Sequence + +from rich.console import Console + +from agents import Runner, RunResult, custom_span, gen_trace_id, trace + +from .agents.financials_agent import financials_agent +from .agents.planner_agent import FinancialSearchItem, FinancialSearchPlan, planner_agent +from .agents.risk_agent import risk_agent +from .agents.search_agent import search_agent +from .agents.verifier_agent import VerificationResult, verifier_agent +from .agents.writer_agent import FinancialReportData, writer_agent +from .printer import Printer + + +async def _summary_extractor(run_result: RunResult) -> str: + """Custom output extractor for sub‑agents that return an AnalysisSummary.""" + # The financial/risk analyst agents emit an AnalysisSummary with a `summary` field. + # We want the tool call to return just that summary text so the writer can drop it inline. + return str(run_result.final_output.summary) + + +class FinancialResearchManager: + """ + Orchestrates the full flow: planning, searching, sub‑analysis, writing, and verification. + """ + + def __init__(self) -> None: + self.console = Console() + self.printer = Printer(self.console) + + async def run(self, query: str) -> None: + trace_id = gen_trace_id() + with trace("Financial research trace", trace_id=trace_id): + self.printer.update_item( + "trace_id", + f"View trace: https://platform.openai.com/traces/{trace_id}", + is_done=True, + hide_checkmark=True, + ) + self.printer.update_item( + "start", "Starting financial research...", is_done=True) + search_plan = await self._plan_searches(query) + search_results = await self._perform_searches(search_plan) + report = await self._write_report(query, search_results) + verification = await self._verify_report(report) + + final_report = f"Report summary\n\n{report.short_summary}" + self.printer.update_item( + "final_report", final_report, is_done=True) + + self.printer.end() + + # Print to stdout + print("\n\n=====REPORT=====\n\n") + print(f"Report:\n{report.markdown_report}") + print("\n\n=====FOLLOW UP QUESTIONS=====\n\n") + print("\n".join(report.follow_up_questions)) + print("\n\n=====VERIFICATION=====\n\n") + print(verification) + + async def _plan_searches(self, query: str) -> FinancialSearchPlan: + self.printer.update_item("planning", "Planning searches...") + result = await Runner.run(planner_agent, f"Query: {query}") + self.printer.update_item( + "planning", + f"Will perform {len(result.final_output.searches)} searches", + is_done=True, + ) + return result.final_output_as(FinancialSearchPlan) + + async def _perform_searches(self, search_plan: FinancialSearchPlan) -> Sequence[str]: + with custom_span("Search the web"): + self.printer.update_item("searching", "Searching...") + tasks = [asyncio.create_task(self._search(item)) + for item in search_plan.searches] + results: list[str] = [] + num_completed = 0 + for task in asyncio.as_completed(tasks): + result = await task + if result is not None: + results.append(result) + num_completed += 1 + self.printer.update_item( + "searching", f"Searching... {num_completed}/{len(tasks)} completed" + ) + self.printer.mark_item_done("searching") + return results + + async def _search(self, item: FinancialSearchItem) -> str | None: + input_data = f"Search term: {item.query}\nReason: {item.reason}" + try: + result = await Runner.run(search_agent, input_data) + return str(result.final_output) + except Exception: + return None + + async def _write_report(self, query: str, search_results: Sequence[str]) -> FinancialReportData: + # Expose the specialist analysts as tools so the writer can invoke them inline + # and still produce the final FinancialReportData output. + fundamentals_tool = financials_agent.as_tool( + tool_name="fundamentals_analysis", + tool_description="Use to get a short write‑up of key financial metrics", + custom_output_extractor=_summary_extractor, + ) + risk_tool = risk_agent.as_tool( + tool_name="risk_analysis", + tool_description="Use to get a short write‑up of potential red flags", + custom_output_extractor=_summary_extractor, + ) + writer_with_tools = writer_agent.clone( + tools=[fundamentals_tool, risk_tool]) + self.printer.update_item("writing", "Thinking about report...") + input_data = f"Original query: {query}\nSummarized search results: {search_results}" + result = Runner.run_streamed(writer_with_tools, input_data) + update_messages = [ + "Planning report structure...", + "Writing sections...", + "Finalizing report...", + ] + last_update = time.time() + next_message = 0 + async for _ in result.stream_events(): + if time.time() - last_update > 5 and next_message < len(update_messages): + self.printer.update_item( + "writing", update_messages[next_message]) + next_message += 1 + last_update = time.time() + self.printer.mark_item_done("writing") + return result.final_output_as(FinancialReportData) + + async def _verify_report(self, report: FinancialReportData) -> VerificationResult: + self.printer.update_item("verifying", "Verifying report...") + result = await Runner.run(verifier_agent, report.markdown_report) + self.printer.mark_item_done("verifying") + return result.final_output_as(VerificationResult) diff --git a/examples/financial_research_agent/printer.py b/examples/financial_research_agent/printer.py new file mode 100644 index 00000000..16e04d2e --- /dev/null +++ b/examples/financial_research_agent/printer.py @@ -0,0 +1,45 @@ +from typing import Any + +from rich.console import Console, Group +from rich.live import Live +from rich.spinner import Spinner + + +class Printer: + """ + Simple wrapper to stream status updates. Used by the financial bot + manager as it orchestrates planning, search and writing. + """ + def __init__(self, console: Console) -> None: + self.live = Live(console=console) + self.items: dict[str, tuple[str, bool]] = {} + self.hide_done_ids: set[str] = set() + self.live.start() + + def end(self) -> None: + self.live.stop() + + def hide_done_checkmark(self, item_id: str) -> None: + self.hide_done_ids.add(item_id) + + def update_item( + self, item_id: str, content: str, is_done: bool = False, hide_checkmark: bool = False + ) -> None: + self.items[item_id] = (content, is_done) + if hide_checkmark: + self.hide_done_ids.add(item_id) + self.flush() + + def mark_item_done(self, item_id: str) -> None: + self.items[item_id] = (self.items[item_id][0], True) + self.flush() + + def flush(self) -> None: + renderables: list[Any] = [] + for item_id, (content, is_done) in self.items.items(): + if is_done: + prefix = "✅ " if item_id not in self.hide_done_ids else "" + renderables.append(prefix + content) + else: + renderables.append(Spinner("dots", text=content)) + self.live.update(Group(*renderables))