-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathui.py
206 lines (183 loc) · 6.82 KB
/
ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
####################################################################
# Pure-python web app for speaking with the realtime voice api #
# Data is relayed to/from server using WebRTC #
# You can run this example with just #
# #
# `python ./examples/realtime/ui.py` #
####################################################################
from __future__ import annotations
import base64
import os
from threading import Event, Thread
import gradio as gr
import numpy as np
import openai
from dotenv import load_dotenv
from gradio_webrtc import (
AdditionalOutputs,
StreamHandler,
WebRTC
)
from openai.types.beta.realtime import ResponseAudioTranscriptDoneEvent
from pydub import AudioSegment
load_dotenv()
SAMPLE_RATE = 24000
def encode_audio(sample_rate, data):
segment = AudioSegment(
data.tobytes(),
frame_rate=sample_rate,
sample_width=data.dtype.itemsize,
channels=1,
)
pcm_audio = (
segment.set_frame_rate(SAMPLE_RATE).set_channels(1).set_sample_width(2).raw_data
)
return base64.b64encode(pcm_audio).decode("utf-8")
class OpenAIHandler(StreamHandler):
def __init__(
self,
expected_layout="mono",
output_sample_rate=SAMPLE_RATE,
output_frame_size=480,
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=SAMPLE_RATE,
)
self.connection = None
self.all_output_data = None
self.quit = Event()
self.connected = Event()
self.thread = None
self._generator = None
def copy(self):
return OpenAIHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
def _initialize_connection(self, api_key: str):
"""Connect to realtime API. Run forever in separate thread to keep connection open."""
self.client = openai.Client(api_key=api_key)
with self.client.beta.realtime.connect(
model="gpt-4o-mini-realtime-preview-2024-12-17"
) as conn:
conn.session.update(session={"turn_detection": {"type": "server_vad"}})
self.connection = conn
self.connected.set()
self.quit.wait()
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if not self.connection:
self.wait_for_args_sync()
self.thread = Thread(
target=self._initialize_connection, args=(self.latest_args[-1],)
)
self.thread.start()
self.connected.wait()
try:
assert self.connection, "Connection not initialized"
sample_rate, array = frame
array = array.squeeze()
audio_message = encode_audio(sample_rate, array)
self.connection.input_audio_buffer.append(audio=audio_message)
except Exception as e:
# print traceback
print(f"Error in receive: {str(e)}")
import traceback
traceback.print_exc()
def generator(self):
while True:
if not self.connection:
yield None
continue
for event in self.connection:
if event.type == "response.audio_transcript.done":
yield AdditionalOutputs(event)
if event.type == "response.audio.delta":
yield (
self.output_sample_rate,
np.frombuffer(
base64.b64decode(event.delta), dtype=np.int16
).reshape(1, -1),
)
def emit(self) -> tuple[int, np.ndarray] | None:
if not self.connection:
return None
if not self._generator:
self._generator = self.generator()
try:
return next(self._generator)
except StopIteration:
self._generator = self.generator()
return None
def reset_state(self):
"""Reset connection state for new recording session"""
self.connection = None
self.quit.clear()
self.connected.clear()
self.thread = None
self._generator = None
def shutdown(self) -> None:
if self.connection:
self.connection.close()
self.quit.set()
if self.thread:
self.thread.join(timeout=5)
self.reset_state()
def update_chatbot(chatbot: list[dict], response: ResponseAudioTranscriptDoneEvent):
chatbot.append({"role": "assistant", "content": response.transcript})
return chatbot
with gr.Blocks() as demo:
gr.HTML("""
<div style='display: flex; align-items: center; justify-content: center; gap: 20px'>
<div style="background-color: var(--block-background-fill); border-radius: 8px">
<img src="https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/openai-logo.svg" style="width: 100px; height: 100px;">
</div>
<div>
<h1>OpenAI Realtime Voice Chat</h1>
<p>Speak with OpenAI's latest using real-time audio streaming api.</p>
<p>Powered by <a href="https://gradio.app/">Gradio</a> and <a href==https://freddyaboulton.github.io/gradio-webrtc/">WebRTC</a>⚡️</p>
<p>Get an API key from <a href="https://platform.openai.com/">OpenAI</a>.</p>
</div>
</div>
""")
with gr.Row(visible=True) as api_key_row:
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API Key",
value=os.getenv("OPENAI_API_KEY", ""),
type="password",
)
with gr.Row(visible=False) as row:
with gr.Column(scale=1):
webrtc = WebRTC(
label="Conversation",
modality="audio",
mode="send-receive",
icon="https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/openai-logo.svg",
)
with gr.Column(scale=5):
chatbot = gr.Chatbot(label="Conversation", value=[], type="messages")
webrtc.stream(
OpenAIHandler(),
inputs=[webrtc, api_key],
outputs=[webrtc],
time_limit=90,
concurrency_limit=2,
)
webrtc.on_additional_outputs(
update_chatbot,
inputs=[chatbot],
outputs=[chatbot],
show_progress="hidden",
queue=True,
)
api_key.submit(
lambda: (gr.update(visible=False), gr.update(visible=True)),
None,
[api_key_row, row],
)
if __name__ == "__main__":
demo.launch()