-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcallbacks.py
130 lines (96 loc) · 3.56 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""Custom callbacks
"""
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import BaseFinetuning, EarlyStopping, LearningRateFinder
from lightning.pytorch.trainer.states import TrainerFn
class PhaseEarlyStopping(EarlyStopping):
"""Monitor a validation metric and stop training when it stops improving.
Only functions in a specific phase of training.
"""
training_phase = None
def switch_phase(self, phase: str):
"""Switch phase of callback"""
if phase == self.training_phase:
self.activate()
else:
self.deactivate()
def deactivate(self):
"""Deactivate callback"""
self.active = False
def activate(self):
"""Activate callback"""
self.active = True
def _should_skip_check(self, trainer: Trainer) -> bool:
return (
(trainer.state.fn != TrainerFn.FITTING) or (trainer.sanity_checking) or not self.active
)
class PretrainEarlyStopping(EarlyStopping):
"""Monitor a validation metric and stop training when it stops improving.
Only functions in the 'pretrain' phase of training.
"""
training_phase = "pretrain"
class MainEarlyStopping(EarlyStopping):
"""Monitor a validation metric and stop training when it stops improving.
Only functions in the 'main' phase of training.
"""
training_phase = "main"
class PretrainFreeze(BaseFinetuning):
"""Freeze the satellite and NWP encoders during pretraining"""
training_phase = "pretrain"
def __init__(self):
"""Freeze the satellite and NWP encoders during pretraining"""
super().__init__()
def freeze_before_training(self, pl_module):
"""Freeze satellite and NWP encoders before training start"""
# freeze any module you want
modules = []
if pl_module.include_sat:
modules += [pl_module.sat_encoder]
if pl_module.include_nwp:
modules += [pl_module.nwp_encoder]
self.freeze(modules)
def finetune_function(self, pl_module, current_epoch, optimizer):
"""Unfreeze satellite and NWP encoders"""
if not self.active:
modules = []
if pl_module.include_sat:
modules += [pl_module.sat_encoder]
if pl_module.include_nwp:
modules += [pl_module.nwp_encoder]
self.unfreeze_and_add_param_group(
modules=modules,
optimizer=optimizer,
train_bn=True,
)
def switch_phase(self, phase: str):
"""Switch phase of callback"""
if phase == self.training_phase:
self.activate()
else:
self.deactivate()
def deactivate(self):
"""Deactivate callback"""
self.active = False
def activate(self):
"""Activate callback"""
self.active = True
class PhasedLearningRateFinder(LearningRateFinder):
"""Finds a learning rate at the start of each phase of learning"""
active = True
def on_fit_start(self, *args, **kwargs):
"""Do nothing"""
return
def on_train_epoch_start(self, trainer, pl_module):
"""Run learning rate finder on epoch start and then deactivate"""
if self.active:
self.lr_find(trainer, pl_module)
self.deactivate()
def switch_phase(self, phase: str):
"""Switch training phase"""
self.activate()
def deactivate(self):
"""Deactivate callback"""
self.active = False
def activate(self):
"""Activate callback"""
self.active = True