|
| 1 | +""" Data module for pytorch lightning """ |
| 2 | +import glob |
| 3 | + |
| 4 | +from lightning.pytorch import LightningDataModule |
| 5 | +from ocf_datapipes.batch import BatchKey, stack_np_examples_into_batch |
| 6 | +from ocf_datapipes.training.pvnet_site import pvnet_site_netcdf_datapipe |
| 7 | +from torch.utils.data import DataLoader |
| 8 | + |
| 9 | +from pvnet.data.utils import batch_to_tensor |
| 10 | + |
| 11 | + |
| 12 | +class WindDataModule(LightningDataModule): |
| 13 | + """Datamodule for training pvnet and using pvnet pipeline in `ocf_datapipes`.""" |
| 14 | + |
| 15 | + def __init__( |
| 16 | + self, |
| 17 | + configuration=None, |
| 18 | + batch_size=16, |
| 19 | + num_workers=0, |
| 20 | + prefetch_factor=None, |
| 21 | + train_period=[None, None], |
| 22 | + val_period=[None, None], |
| 23 | + test_period=[None, None], |
| 24 | + batch_dir=None, |
| 25 | + ): |
| 26 | + """Datamodule for training pvnet and using pvnet pipeline in `ocf_datapipes`. |
| 27 | +
|
| 28 | + Can also be used with pre-made batches if `batch_dir` is set. |
| 29 | +
|
| 30 | +
|
| 31 | + Args: |
| 32 | + configuration: Path to datapipe configuration file. |
| 33 | + batch_size: Batch size. |
| 34 | + num_workers: Number of workers to use in multiprocess batch loading. |
| 35 | + prefetch_factor: Number of data will be prefetched at the end of each worker process. |
| 36 | + train_period: Date range filter for train dataloader. |
| 37 | + val_period: Date range filter for val dataloader. |
| 38 | + test_period: Date range filter for test dataloader. |
| 39 | + batch_dir: Path to the directory of pre-saved batches. Cannot be used together with |
| 40 | + 'train/val/test_period'. |
| 41 | +
|
| 42 | + """ |
| 43 | + super().__init__() |
| 44 | + self.configuration = configuration |
| 45 | + self.batch_size = batch_size |
| 46 | + self.batch_dir = batch_dir |
| 47 | + |
| 48 | + # if batch_dir is not None: |
| 49 | + # if any([period != [None, None] for period in [train_period, val_period, test_period]]): |
| 50 | + # raise ValueError("Cannot set `(train/val/test)_period` with presaved batches") |
| 51 | + |
| 52 | + self.train_period = [None, None] |
| 53 | + # None if d is None else datetime.strptime(d, "%Y-%m-%d") for d in train_period |
| 54 | + # ] |
| 55 | + self.val_period = [None, None] |
| 56 | + # None if d is None else datetime.strptime(d, "%Y-%m-%d") for d in val_period |
| 57 | + # ] |
| 58 | + self.test_period = [None, None] |
| 59 | + # None if d is None else datetime.strptime(d, "%Y-%m-%d") for d in test_period |
| 60 | + # ] |
| 61 | + |
| 62 | + self._common_dataloader_kwargs = dict( |
| 63 | + batch_size=None, # batched in datapipe step |
| 64 | + sampler=None, |
| 65 | + batch_sampler=None, |
| 66 | + num_workers=num_workers, |
| 67 | + collate_fn=None, |
| 68 | + pin_memory=False, |
| 69 | + drop_last=False, |
| 70 | + timeout=0, |
| 71 | + worker_init_fn=None, |
| 72 | + prefetch_factor=prefetch_factor, |
| 73 | + persistent_workers=False, |
| 74 | + ) |
| 75 | + |
| 76 | + def _get_datapipe(self, start_time, end_time): |
| 77 | + data_pipeline = pvnet_site_netcdf_datapipe( |
| 78 | + self.configuration, |
| 79 | + keys=["pv", "nwp"], |
| 80 | + ) |
| 81 | + |
| 82 | + data_pipeline = ( |
| 83 | + data_pipeline.batch(self.batch_size) |
| 84 | + .map(stack_np_examples_into_batch) |
| 85 | + .map(batch_to_tensor) |
| 86 | + ) |
| 87 | + return data_pipeline |
| 88 | + |
| 89 | + def _get_premade_batches_datapipe(self, subdir, shuffle=False): |
| 90 | + filenames = list(glob.glob(f"{self.batch_dir}/{subdir}/*.nc")) |
| 91 | + data_pipeline = pvnet_site_netcdf_datapipe( |
| 92 | + config_filename=self.configuration, |
| 93 | + keys=["pv", "nwp"], |
| 94 | + filenames=filenames, |
| 95 | + ) |
| 96 | + data_pipeline = ( |
| 97 | + data_pipeline.batch(self.batch_size) |
| 98 | + .map(stack_np_examples_into_batch) |
| 99 | + .map(batch_to_tensor) |
| 100 | + ) |
| 101 | + if shuffle: |
| 102 | + data_pipeline = ( |
| 103 | + data_pipeline.shuffle(buffer_size=100) |
| 104 | + .sharding_filter() |
| 105 | + # Split the batches and reshuffle them to be combined into new batches |
| 106 | + .split_batches(splitting_key=BatchKey.sensor) |
| 107 | + .shuffle(buffer_size=100 * self.batch_size) |
| 108 | + ) |
| 109 | + else: |
| 110 | + data_pipeline = ( |
| 111 | + data_pipeline.sharding_filter() |
| 112 | + # Split the batches so we can use any batch-size |
| 113 | + .split_batches(splitting_key=BatchKey.sensor) |
| 114 | + ) |
| 115 | + |
| 116 | + data_pipeline = ( |
| 117 | + data_pipeline.batch(self.batch_size) |
| 118 | + .map(stack_np_examples_into_batch) |
| 119 | + .map(batch_to_tensor) |
| 120 | + .set_length(int(len(filenames) / self.batch_size)) |
| 121 | + ) |
| 122 | + |
| 123 | + return data_pipeline |
| 124 | + |
| 125 | + def train_dataloader(self): |
| 126 | + """Construct train dataloader""" |
| 127 | + if self.batch_dir is not None: |
| 128 | + datapipe = self._get_premade_batches_datapipe("train", shuffle=True) |
| 129 | + else: |
| 130 | + datapipe = self._get_datapipe(*self.train_period) |
| 131 | + return DataLoader(datapipe, shuffle=True, **self._common_dataloader_kwargs) |
| 132 | + |
| 133 | + def val_dataloader(self): |
| 134 | + """Construct val dataloader""" |
| 135 | + if self.batch_dir is not None: |
| 136 | + datapipe = self._get_premade_batches_datapipe("val") |
| 137 | + else: |
| 138 | + datapipe = self._get_datapipe(*self.val_period) |
| 139 | + return DataLoader(datapipe, shuffle=False, **self._common_dataloader_kwargs) |
| 140 | + |
| 141 | + def test_dataloader(self): |
| 142 | + """Construct test dataloader""" |
| 143 | + if self.batch_dir is not None: |
| 144 | + datapipe = self._get_premade_batches_datapipe("test") |
| 145 | + else: |
| 146 | + datapipe = self._get_datapipe(*self.test_period) |
| 147 | + return DataLoader(datapipe, shuffle=False, **self._common_dataloader_kwargs) |
0 commit comments