|
| 1 | +"""Up Sample Xarray datasets Datapipe""" |
| 2 | +from torch.utils.data import IterDataPipe, functional_datapipe |
| 3 | + |
| 4 | +import logging |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +log = logging.getLogger(__name__) |
| 8 | + |
| 9 | + |
| 10 | +@functional_datapipe("upsample") |
| 11 | +class UpSampleIterDataPipe(IterDataPipe): |
| 12 | + """Up Sample Xarray dataset with Interpolate""" |
| 13 | + |
| 14 | + def __init__( |
| 15 | + self, |
| 16 | + source_datapipe: IterDataPipe, |
| 17 | + y_upsample: int, |
| 18 | + x_upsample: int, |
| 19 | + x_dim_name: str = "longitude", |
| 20 | + y_dim_name: str = "latitude", |
| 21 | + keep_same_shape: bool = False, |
| 22 | + ): |
| 23 | + """ |
| 24 | + Up Sample xarray dataset/dataarrays with interpolate |
| 25 | +
|
| 26 | + Args: |
| 27 | + source_datapipe: Datapipe emitting Xarray dataset |
| 28 | + y_upsample: up sample value in the y direction |
| 29 | + x_upsample: Up sample value in the x direction |
| 30 | + x_dim_name: X dimension name |
| 31 | + y_dim_name: Y dimension name |
| 32 | + keep_same_shape: Optional to keep the same shape. Defaults to zero. |
| 33 | + If True, shape is trimmed around the edges. |
| 34 | + """ |
| 35 | + self.source_datapipe = source_datapipe |
| 36 | + self.y_upsample = y_upsample |
| 37 | + self.x_upsample = x_upsample |
| 38 | + self.x_dim_name = x_dim_name |
| 39 | + self.y_dim_name = y_dim_name |
| 40 | + self.keep_same_shape = keep_same_shape |
| 41 | + |
| 42 | + def __iter__(self): |
| 43 | + """Coarsen the data on the specified dimensions""" |
| 44 | + for xr_data in self.source_datapipe: |
| 45 | + |
| 46 | + log.info("Up Sampling Data") |
| 47 | + print(xr_data) |
| 48 | + |
| 49 | + # get current x and y values |
| 50 | + current_x_dim_values = getattr(xr_data, self.x_dim_name).values |
| 51 | + current_y_dim_values = getattr(xr_data, self.y_dim_name).values |
| 52 | + |
| 53 | + # get current interval values |
| 54 | + current_x_interval = np.abs(current_x_dim_values[1] - current_x_dim_values[0]) |
| 55 | + current_y_interval = np.abs(current_y_dim_values[1] - current_y_dim_values[0]) |
| 56 | + |
| 57 | + # new intervals |
| 58 | + new_x_interval = current_x_interval / self.x_upsample |
| 59 | + new_y_interval = current_y_interval / self.y_upsample |
| 60 | + |
| 61 | + if self.keep_same_shape: |
| 62 | + # up sample the center of the image and keep the same shape as original image |
| 63 | + |
| 64 | + center_x = current_x_dim_values[int(len(current_x_dim_values) / 2)] |
| 65 | + center_y = current_y_dim_values[int(len(current_y_dim_values) / 2)] |
| 66 | + |
| 67 | + new_x_min = center_x - new_x_interval * int(len(current_x_dim_values) / 2) |
| 68 | + new_x_max = new_x_min + new_x_interval * (len(current_x_dim_values) - 1) |
| 69 | + |
| 70 | + new_y_min = center_y - new_y_interval * int(len(current_y_dim_values) / 2) |
| 71 | + new_y_max = new_y_min + new_y_interval * (len(current_y_dim_values) - 1) |
| 72 | + |
| 73 | + else: |
| 74 | + |
| 75 | + new_x_min = min(current_x_dim_values) |
| 76 | + new_x_max = max(current_x_dim_values) |
| 77 | + |
| 78 | + new_y_min = min(current_y_dim_values) |
| 79 | + new_y_max = max(current_y_dim_values) |
| 80 | + |
| 81 | + # get new x values |
| 82 | + new_x_dim_values = list( |
| 83 | + np.arange( |
| 84 | + new_x_min, |
| 85 | + new_x_max + new_x_interval, |
| 86 | + new_x_interval, |
| 87 | + ) |
| 88 | + ) |
| 89 | + |
| 90 | + # get new y values |
| 91 | + new_y_dim_values = list( |
| 92 | + np.arange( |
| 93 | + new_y_min, |
| 94 | + new_y_max + new_y_interval, |
| 95 | + new_y_interval, |
| 96 | + ) |
| 97 | + ) |
| 98 | + |
| 99 | + log.info( |
| 100 | + f"Up Sampling X from ({min(current_x_dim_values)}, {current_x_interval}, " |
| 101 | + f"{max(current_x_dim_values)}) to ({new_x_min}, {new_x_interval}, {new_x_max})" |
| 102 | + ) |
| 103 | + log.info( |
| 104 | + f"Up Sampling Y from ({min(current_y_dim_values)}, {current_y_interval}, " |
| 105 | + f"{max(current_y_dim_values)}) to ({new_y_min}, {new_y_interval}, {new_y_max})" |
| 106 | + ) |
| 107 | + |
| 108 | + # resample |
| 109 | + xr_data = xr_data.interp(**{self.x_dim_name: new_x_dim_values}) |
| 110 | + xr_data = xr_data.interp(**{self.y_dim_name: new_y_dim_values}) |
| 111 | + |
| 112 | + yield xr_data |
0 commit comments