-
Notifications
You must be signed in to change notification settings - Fork 5.8k
/
Copy pathmog2.cpp
262 lines (208 loc) · 10.3 KB
/
mog2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "cuda/mog2.hpp"
using namespace cv;
using namespace cv::cuda;
using namespace cv::cuda::device::mog2;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
Ptr<cuda::BackgroundSubtractorMOG2> cv::cuda::createBackgroundSubtractorMOG2(int, double, bool)
{
throw_no_cuda();
return Ptr<cuda::BackgroundSubtractorMOG2>();
}
#else
namespace
{
// default parameters of gaussian background detection algorithm
const int defaultHistory = 500; // Learning rate; alpha = 1/defaultHistory2
const float defaultVarThreshold = 4.0f * 4.0f;
const int defaultNMixtures = 5; // maximal number of Gaussians in mixture
const float defaultBackgroundRatio = 0.9f; // threshold sum of weights for background test
const float defaultVarThresholdGen = 3.0f * 3.0f;
const float defaultVarInit = 15.0f; // initial variance for new components
const float defaultVarMax = 5.0f * defaultVarInit;
const float defaultVarMin = 4.0f;
// additional parameters
const float defaultCT = 0.05f; // complexity reduction prior constant 0 - no reduction of number of components
const unsigned char defaultShadowValue = 127; // value to use in the segmentation mask for shadows, set 0 not to do shadow detection
const float defaultShadowThreshold = 0.5f; // Tau - shadow threshold, see the paper for explanation
class MOG2Impl CV_FINAL : public cuda::BackgroundSubtractorMOG2
{
public:
MOG2Impl(int history, double varThreshold, bool detectShadows);
~MOG2Impl();
void apply(InputArray image, OutputArray fgmask, double learningRate = -1) CV_OVERRIDE;
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream &stream) CV_OVERRIDE;
void getBackgroundImage(OutputArray backgroundImage) const CV_OVERRIDE;
void getBackgroundImage(OutputArray backgroundImage, Stream &stream) const CV_OVERRIDE;
int getHistory() const CV_OVERRIDE { return history_; }
void setHistory(int history) CV_OVERRIDE { history_ = history; }
int getNMixtures() const CV_OVERRIDE { return constantsHost_.nmixtures_; }
void setNMixtures(int nmixtures) CV_OVERRIDE { constantsHost_.nmixtures_ = nmixtures; }
double getBackgroundRatio() const CV_OVERRIDE { return constantsHost_.TB_; }
void setBackgroundRatio(double ratio) CV_OVERRIDE { constantsHost_.TB_ = (float)ratio; }
double getVarThreshold() const CV_OVERRIDE { return constantsHost_.Tb_; }
void setVarThreshold(double varThreshold) CV_OVERRIDE { constantsHost_.Tb_ = (float)varThreshold; }
double getVarThresholdGen() const CV_OVERRIDE { return constantsHost_.Tg_; }
void setVarThresholdGen(double varThresholdGen) CV_OVERRIDE { constantsHost_.Tg_ = (float)varThresholdGen; }
double getVarInit() const CV_OVERRIDE { return constantsHost_.varInit_; }
void setVarInit(double varInit) CV_OVERRIDE { constantsHost_.varInit_ = (float)varInit; }
double getVarMin() const CV_OVERRIDE { return constantsHost_.varMin_; }
void setVarMin(double varMin) CV_OVERRIDE {
if (nframes_ == 0) {
constantsHost_.varMin_ = (float)varMin;
} else {
constantsHost_.varMin_ = ::fminf((float)varMin, constantsHost_.varMax_);
}
}
double getVarMax() const CV_OVERRIDE { return constantsHost_.varMax_; }
void setVarMax(double varMax) CV_OVERRIDE {
if (nframes_ == 0) {
constantsHost_.varMax_ = (float)varMax;
} else {
constantsHost_.varMax_ = ::fmaxf(constantsHost_.varMin_, (float)varMax);
}
}
double getComplexityReductionThreshold() const CV_OVERRIDE { return ct_; }
void setComplexityReductionThreshold(double ct) CV_OVERRIDE { ct_ = (float)ct; }
bool getDetectShadows() const CV_OVERRIDE { return detectShadows_; }
void setDetectShadows(bool detectShadows) CV_OVERRIDE { detectShadows_ = detectShadows; }
int getShadowValue() const CV_OVERRIDE { return constantsHost_.shadowVal_; }
void setShadowValue(int value) CV_OVERRIDE { constantsHost_.shadowVal_ = (uchar)value; }
double getShadowThreshold() const CV_OVERRIDE { return constantsHost_.tau_; }
void setShadowThreshold(double threshold) CV_OVERRIDE { constantsHost_.tau_ = (float)threshold; }
private:
void initialize(Size frameSize, int frameType, Stream &stream);
Constants constantsHost_;
Constants *constantsDevice_;
int history_;
float ct_;
bool detectShadows_;
Size frameSize_;
int frameType_;
int nframes_;
GpuMat weight_;
GpuMat variance_;
GpuMat mean_;
//keep track of number of modes per pixel
GpuMat bgmodelUsedModes_;
};
MOG2Impl::MOG2Impl(int history, double varThreshold, bool detectShadows) : frameSize_(0, 0), frameType_(0), nframes_(0)
{
history_ = history > 0 ? history : defaultHistory;
detectShadows_ = detectShadows;
ct_ = defaultCT;
setNMixtures(defaultNMixtures);
setBackgroundRatio(defaultBackgroundRatio);
setVarInit(defaultVarInit);
setVarMin(defaultVarMin);
setVarMax(defaultVarMax);
setVarThreshold(varThreshold > 0 ? (float)varThreshold : defaultVarThreshold);
setVarThresholdGen(defaultVarThresholdGen);
setShadowValue(defaultShadowValue);
setShadowThreshold(defaultShadowThreshold);
cudaSafeCall(cudaMalloc((void **)&constantsDevice_, sizeof(Constants)));
}
MOG2Impl::~MOG2Impl()
{
cudaFree(constantsDevice_);
}
void MOG2Impl::apply(InputArray image, OutputArray fgmask, double learningRate)
{
apply(image, fgmask, learningRate, Stream::Null());
}
void MOG2Impl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream &stream)
{
using namespace cv::cuda::device::mog2;
GpuMat frame = _frame.getGpuMat();
int ch = frame.channels();
int work_ch = ch;
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
initialize(frame.size(), frame.type(), stream);
_fgmask.create(frameSize_, CV_8UC1);
GpuMat fgmask = _fgmask.getGpuMat();
fgmask.setTo(Scalar::all(0), stream);
++nframes_;
learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(2 * nframes_, history_);
CV_Assert(learningRate >= 0);
mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_,
(float)learningRate, static_cast<float>(-learningRate * ct_), detectShadows_, constantsDevice_, StreamAccessor::getStream(stream));
}
void MOG2Impl::getBackgroundImage(OutputArray backgroundImage) const
{
getBackgroundImage(backgroundImage, Stream::Null());
}
void MOG2Impl::getBackgroundImage(OutputArray _backgroundImage, Stream &stream) const
{
using namespace cv::cuda::device::mog2;
_backgroundImage.create(frameSize_, frameType_);
GpuMat backgroundImage = _backgroundImage.getGpuMat();
getBackgroundImage2_gpu(backgroundImage.channels(), bgmodelUsedModes_, weight_, mean_, backgroundImage, constantsDevice_, StreamAccessor::getStream(stream));
}
void MOG2Impl::initialize(cv::Size frameSize, int frameType, Stream &stream)
{
using namespace cv::cuda::device::mog2;
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4);
frameSize_ = frameSize;
frameType_ = frameType;
nframes_ = 0;
const int ch = CV_MAT_CN(frameType);
const int work_ch = ch;
// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
weight_.create(frameSize.height * getNMixtures(), frameSize_.width, CV_32FC1);
variance_.create(frameSize.height * getNMixtures(), frameSize_.width, CV_32FC1);
mean_.create(frameSize.height * getNMixtures(), frameSize_.width, CV_32FC(work_ch));
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes_.create(frameSize_, CV_8UC1);
bgmodelUsedModes_.setTo(Scalar::all(0));
cudaSafeCall(cudaMemcpyAsync(constantsDevice_, &constantsHost_, sizeof(Constants), cudaMemcpyHostToDevice, StreamAccessor::getStream(stream)));
}
} // namespace
Ptr<cuda::BackgroundSubtractorMOG2> cv::cuda::createBackgroundSubtractorMOG2(int history, double varThreshold, bool detectShadows)
{
return makePtr<MOG2Impl>(history, varThreshold, detectShadows);
}
#endif