-
Notifications
You must be signed in to change notification settings - Fork 220
/
Copy pathdemo.cpp
226 lines (172 loc) · 6.33 KB
/
demo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include "opencv2/opencv.hpp"
#include <map>
#include <vector>
#include <string>
#include <iostream>
using namespace std;
using namespace cv;
using namespace dnn;
std::vector<std::pair<int, int>> backend_target_pairs = {
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
};
class PPHS
{
private:
Net model;
string modelPath;
Scalar imageMean = Scalar(0.5,0.5,0.5);
Scalar imageStd = Scalar(0.5,0.5,0.5);
Size modelInputSize = Size(192, 192);
Size currentSize;
const String inputNames = "x";
const String outputNames = "save_infer_model/scale_0.tmp_1";
int backend_id;
int target_id;
public:
PPHS(const string& modelPath,
int backend_id = 0,
int target_id = 0)
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
{
this->model = readNet(modelPath);
this->model.setPreferableBackend(backend_id);
this->model.setPreferableTarget(target_id);
}
Mat preprocess(const Mat image)
{
this->currentSize = image.size();
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type());
resize(image, preprocessed, this->modelInputSize);
// image normalization
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0);
preprocessed -= imageMean;
preprocessed /= imageStd;
return blobFromImage(preprocessed);;
}
Mat infer(const Mat image)
{
Mat inputBlob = preprocess(image);
this->model.setInput(inputBlob, this->inputNames);
Mat outputBlob = this->model.forward(this->outputNames);
return postprocess(outputBlob);
}
Mat postprocess(Mat image)
{
reduceArgMax(image,image,1);
image = image.reshape(1,image.size[2]);
image.convertTo(image, CV_32F);
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR);
image.convertTo(image, CV_8U);
return image;
}
};
vector<uint8_t> getColorMapList(int num_classes) {
num_classes += 1;
vector<uint8_t> cm(num_classes*3, 0);
int lab, j;
for (int i = 0; i < num_classes; ++i) {
lab = i;
j = 0;
while(lab){
cm[i] |= (((lab >> 0) & 1) << (7 - j));
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j));
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j));
++j;
lab >>= 3;
}
}
cm.erase(cm.begin(), cm.begin()+3);
return cm;
};
Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.4)
{
const Scalar& text_color = Scalar(0, 255, 0);
Mat output_image = image.clone();
vector<uint8_t> color_map = getColorMapList(256);
Mat cmm(color_map);
cmm = cmm.reshape(1,{3,256});
if (fps >= 0)
{
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
}
Mat c1, c2, c3;
LUT(result, cmm.row(0), c1);
LUT(result, cmm.row(1), c2);
LUT(result, cmm.row(2), c3);
Mat pseudo_img;
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img);
addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image);
return output_image;
};
string keys =
"{ help h | | Print help message. }"
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
"0: (default) OpenCV implementation + CPU,\n"
"1: CUDA + GPU (CUDA),\n"
"2: CUDA + GPU (CUDA FP16),\n"
"3: TIM-VX + NPU,\n"
"4: CANN + NPU}"
"{ save s | false | Specify to save results.}"
"{ vis v | true | Specify to open a window for result visualization.}"
;
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
parser.about("Human Segmentation");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string modelPath = parser.get<string>("model");
string inputPath = parser.get<string>("input");
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
bool saveFlag = parser.get<bool>("save");
bool visFlag = parser.get<bool>("vis");
if (modelPath.empty())
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);
VideoCapture cap;
if (!inputPath.empty())
cap.open(samples::findFile(inputPath));
else
cap.open(0);
if (!cap.isOpened())
CV_Error(Error::StsError, "Cannot opend video or file");
Mat frame;
Mat result;
static const std::string kWinName = "Human Segmentation Demo";
TickMeter tm;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
if(inputPath.empty())
cout << "Frame is empty" << endl;
break;
}
tm.start();
result = humanSegmentationModel.infer(frame);
tm.stop();
Mat res_frame = visualize(frame, result, tm.getFPS());
if(visFlag || inputPath.empty())
{
imshow(kWinName, res_frame);
if(!inputPath.empty())
waitKey(0);
}
if(saveFlag)
{
cout << "Results are saved to result.jpg" << endl;
imwrite("result.jpg", res_frame);
}
}
return 0;
}