|
| 1 | +#include "opencv2/opencv.hpp" |
| 2 | + |
| 3 | +#include <map> |
| 4 | +#include <vector> |
| 5 | +#include <string> |
| 6 | +#include <iostream> |
| 7 | + |
| 8 | +using namespace std; |
| 9 | +using namespace cv; |
| 10 | +using namespace dnn; |
| 11 | + |
| 12 | +std::vector<std::pair<int, int>> backend_target_pairs = { |
| 13 | + {DNN_BACKEND_OPENCV, DNN_TARGET_CPU}, |
| 14 | + {DNN_BACKEND_CUDA, DNN_TARGET_CUDA}, |
| 15 | + {DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16}, |
| 16 | + {DNN_BACKEND_TIMVX, DNN_TARGET_NPU}, |
| 17 | + {DNN_BACKEND_CANN, DNN_TARGET_NPU} |
| 18 | +}; |
| 19 | + |
| 20 | +class FER |
| 21 | +{ |
| 22 | +private: |
| 23 | + Net model; |
| 24 | + string modelPath; |
| 25 | + float std[5][2] = { |
| 26 | + {38.2946, 51.6963}, |
| 27 | + {73.5318, 51.5014}, |
| 28 | + {56.0252, 71.7366}, |
| 29 | + {41.5493, 92.3655}, |
| 30 | + {70.7299, 92.2041} |
| 31 | + }; |
| 32 | + vector<String> expressionEnum = { |
| 33 | + "angry", "disgust", "fearful", |
| 34 | + "happy", "neutral", "sad", "surprised" |
| 35 | + }; |
| 36 | + Mat stdPoints = Mat(5, 2, CV_32F, this->std); |
| 37 | + Size patchSize = Size(112,112); |
| 38 | + Scalar imageMean = Scalar(0.5,0.5,0.5); |
| 39 | + Scalar imageStd = Scalar(0.5,0.5,0.5); |
| 40 | + |
| 41 | + const String inputNames = "data"; |
| 42 | + const String outputNames = "label"; |
| 43 | + |
| 44 | + int backend_id; |
| 45 | + int target_id; |
| 46 | + |
| 47 | +public: |
| 48 | + FER(const string& modelPath, |
| 49 | + int backend_id = 0, |
| 50 | + int target_id = 0) |
| 51 | + : modelPath(modelPath), backend_id(backend_id), target_id(target_id) |
| 52 | + { |
| 53 | + this->model = readNet(modelPath); |
| 54 | + this->model.setPreferableBackend(backend_id); |
| 55 | + this->model.setPreferableTarget(target_id); |
| 56 | + } |
| 57 | + |
| 58 | + Mat preprocess(const Mat image, const Mat points) |
| 59 | + { |
| 60 | + // image alignment |
| 61 | + Mat transformation = estimateAffine2D(points, this->stdPoints); |
| 62 | + Mat aligned = Mat::zeros(this->patchSize.height, this->patchSize.width, image.type()); |
| 63 | + warpAffine(image, aligned, transformation, this->patchSize); |
| 64 | + |
| 65 | + // image normalization |
| 66 | + aligned.convertTo(aligned, CV_32F, 1.0 / 255.0); |
| 67 | + aligned -= imageMean; |
| 68 | + aligned /= imageStd; |
| 69 | + |
| 70 | + return blobFromImage(aligned);; |
| 71 | + } |
| 72 | + |
| 73 | + String infer(const Mat image, const Mat facePoints) |
| 74 | + { |
| 75 | + Mat points = facePoints(Rect(4, 0, facePoints.cols-5, facePoints.rows)).reshape(2, 5); |
| 76 | + Mat inputBlob = preprocess(image, points); |
| 77 | + |
| 78 | + this->model.setInput(inputBlob, this->inputNames); |
| 79 | + Mat outputBlob = this->model.forward(this->outputNames); |
| 80 | + |
| 81 | + Point maxLoc; |
| 82 | + minMaxLoc(outputBlob, nullptr, nullptr, nullptr, &maxLoc); |
| 83 | + |
| 84 | + return getDesc(maxLoc.x); |
| 85 | + } |
| 86 | + |
| 87 | + String getDesc(int ind) |
| 88 | + { |
| 89 | + |
| 90 | + if (ind >= 0 && ind < this->expressionEnum.size()) |
| 91 | + { |
| 92 | + return this->expressionEnum[ind]; |
| 93 | + } |
| 94 | + else |
| 95 | + { |
| 96 | + cerr << "Error: Index out of bounds." << endl; |
| 97 | + return ""; |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | +}; |
| 102 | + |
| 103 | +class YuNet |
| 104 | +{ |
| 105 | +public: |
| 106 | + YuNet(const string& model_path, |
| 107 | + const Size& input_size = Size(320, 320), |
| 108 | + float conf_threshold = 0.6f, |
| 109 | + float nms_threshold = 0.3f, |
| 110 | + int top_k = 5000, |
| 111 | + int backend_id = 0, |
| 112 | + int target_id = 0) |
| 113 | + : model_path_(model_path), input_size_(input_size), |
| 114 | + conf_threshold_(conf_threshold), nms_threshold_(nms_threshold), |
| 115 | + top_k_(top_k), backend_id_(backend_id), target_id_(target_id) |
| 116 | + { |
| 117 | + model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); |
| 118 | + } |
| 119 | + |
| 120 | + void setBackendAndTarget(int backend_id, int target_id) |
| 121 | + { |
| 122 | + backend_id_ = backend_id; |
| 123 | + target_id_ = target_id; |
| 124 | + model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_); |
| 125 | + } |
| 126 | + |
| 127 | + /* Overwrite the input size when creating the model. Size format: [Width, Height]. |
| 128 | + */ |
| 129 | + void setInputSize(const Size& input_size) |
| 130 | + { |
| 131 | + input_size_ = input_size; |
| 132 | + model->setInputSize(input_size_); |
| 133 | + } |
| 134 | + |
| 135 | + Mat infer(const Mat image) |
| 136 | + { |
| 137 | + Mat res; |
| 138 | + model->detect(image, res); |
| 139 | + return res; |
| 140 | + } |
| 141 | + |
| 142 | +private: |
| 143 | + Ptr<FaceDetectorYN> model; |
| 144 | + |
| 145 | + string model_path_; |
| 146 | + Size input_size_; |
| 147 | + float conf_threshold_; |
| 148 | + float nms_threshold_; |
| 149 | + int top_k_; |
| 150 | + int backend_id_; |
| 151 | + int target_id_; |
| 152 | +}; |
| 153 | + |
| 154 | +cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, const vector<String> expressions, float fps = -1.f) |
| 155 | +{ |
| 156 | + static cv::Scalar box_color{0, 255, 0}; |
| 157 | + static std::vector<cv::Scalar> landmark_color{ |
| 158 | + cv::Scalar(255, 0, 0), // right eye |
| 159 | + cv::Scalar( 0, 0, 255), // left eye |
| 160 | + cv::Scalar( 0, 255, 0), // nose tip |
| 161 | + cv::Scalar(255, 0, 255), // right mouth corner |
| 162 | + cv::Scalar( 0, 255, 255) // left mouth corner |
| 163 | + }; |
| 164 | + static cv::Scalar text_color{0, 255, 0}; |
| 165 | + |
| 166 | + auto output_image = image.clone(); |
| 167 | + |
| 168 | + if (fps >= 0) |
| 169 | + { |
| 170 | + cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2); |
| 171 | + } |
| 172 | + |
| 173 | + for (int i = 0; i < faces.rows; ++i) |
| 174 | + { |
| 175 | + // Draw bounding boxes |
| 176 | + int x1 = static_cast<int>(faces.at<float>(i, 0)); |
| 177 | + int y1 = static_cast<int>(faces.at<float>(i, 1)); |
| 178 | + int w = static_cast<int>(faces.at<float>(i, 2)); |
| 179 | + int h = static_cast<int>(faces.at<float>(i, 3)); |
| 180 | + cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2); |
| 181 | + |
| 182 | + // Expression as text |
| 183 | + String exp = expressions[i]; |
| 184 | + cv::putText(output_image, exp, cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color); |
| 185 | + |
| 186 | + // Draw landmarks |
| 187 | + for (int j = 0; j < landmark_color.size(); ++j) |
| 188 | + { |
| 189 | + int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5)); |
| 190 | + cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2); |
| 191 | + } |
| 192 | + } |
| 193 | + return output_image; |
| 194 | +} |
| 195 | + |
| 196 | +string keys = |
| 197 | +"{ help h | | Print help message. }" |
| 198 | +"{ model m | facial_expression_recognition_mobilefacenet_2022july.onnx | Usage: Path to the model, defaults to facial_expression_recognition_mobilefacenet_2022july.onnx }" |
| 199 | +"{ yunet_model ym | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Usage: Path to the face detection yunet model, defaults to face_detection_yunet_2023mar.onnx }" |
| 200 | +"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
| 201 | +"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n" |
| 202 | + "0: (default) OpenCV implementation + CPU,\n" |
| 203 | + "1: CUDA + GPU (CUDA),\n" |
| 204 | + "2: CUDA + GPU (CUDA FP16),\n" |
| 205 | + "3: TIM-VX + NPU,\n" |
| 206 | + "4: CANN + NPU}" |
| 207 | +"{ save s | false | Specify to save results.}" |
| 208 | +"{ vis v | true | Specify to open a window for result visualization.}" |
| 209 | +; |
| 210 | + |
| 211 | + |
| 212 | +int main(int argc, char** argv) |
| 213 | +{ |
| 214 | + CommandLineParser parser(argc, argv, keys); |
| 215 | + |
| 216 | + parser.about("Facial Expression Recognition"); |
| 217 | + if (parser.has("help")) |
| 218 | + { |
| 219 | + parser.printMessage(); |
| 220 | + return 0; |
| 221 | + } |
| 222 | + |
| 223 | + string modelPath = parser.get<string>("model"); |
| 224 | + string yunetModelPath = parser.get<string>("yunet_model"); |
| 225 | + string inputPath = parser.get<string>("input"); |
| 226 | + uint8_t backendTarget = parser.get<uint8_t>("backend_target"); |
| 227 | + bool saveFlag = parser.get<bool>("save"); |
| 228 | + bool visFlag = parser.get<bool>("vis"); |
| 229 | + |
| 230 | + if (modelPath.empty()) |
| 231 | + CV_Error(Error::StsError, "Model file " + modelPath + " not found"); |
| 232 | + |
| 233 | + if (yunetModelPath.empty()) |
| 234 | + CV_Error(Error::StsError, "Face Detection Model file " + yunetModelPath + " not found"); |
| 235 | + |
| 236 | + YuNet faceDetectionModel(yunetModelPath); |
| 237 | + FER expressionRecognitionModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second); |
| 238 | + |
| 239 | + VideoCapture cap; |
| 240 | + if (!inputPath.empty()) |
| 241 | + cap.open(samples::findFile(inputPath)); |
| 242 | + else |
| 243 | + cap.open(0); |
| 244 | + |
| 245 | + if (!cap.isOpened()) |
| 246 | + CV_Error(Error::StsError, "Cannot opend video or file"); |
| 247 | + |
| 248 | + Mat frame; |
| 249 | + static const std::string kWinName = "Facial Expression Demo"; |
| 250 | + |
| 251 | + |
| 252 | + while (waitKey(1) < 0) |
| 253 | + { |
| 254 | + cap >> frame; |
| 255 | + |
| 256 | + if (frame.empty()) |
| 257 | + { |
| 258 | + if(inputPath.empty()) |
| 259 | + cout << "Frame is empty" << endl; |
| 260 | + break; |
| 261 | + } |
| 262 | + |
| 263 | + faceDetectionModel.setInputSize(frame.size()); |
| 264 | + |
| 265 | + Mat faces = faceDetectionModel.infer(frame); |
| 266 | + vector<String> expressions; |
| 267 | + |
| 268 | + for (int i = 0; i < faces.rows; ++i) |
| 269 | + { |
| 270 | + Mat face = faces.row(i); |
| 271 | + String exp = expressionRecognitionModel.infer(frame, face); |
| 272 | + expressions.push_back(exp); |
| 273 | + |
| 274 | + int x1 = static_cast<int>(faces.at<float>(i, 0)); |
| 275 | + int y1 = static_cast<int>(faces.at<float>(i, 1)); |
| 276 | + int w = static_cast<int>(faces.at<float>(i, 2)); |
| 277 | + int h = static_cast<int>(faces.at<float>(i, 3)); |
| 278 | + float conf = faces.at<float>(i, 14); |
| 279 | + |
| 280 | + std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f expression=%s\n", i, x1, y1, w, h, conf, exp.c_str()); |
| 281 | + |
| 282 | + } |
| 283 | + |
| 284 | + Mat res_frame = visualize(frame, faces, expressions); |
| 285 | + |
| 286 | + if(visFlag || inputPath.empty()) |
| 287 | + { |
| 288 | + imshow(kWinName, res_frame); |
| 289 | + if(!inputPath.empty()) |
| 290 | + waitKey(0); |
| 291 | + } |
| 292 | + if(saveFlag) |
| 293 | + { |
| 294 | + cout << "Results are saved to result.jpg" << endl; |
| 295 | + |
| 296 | + cv::imwrite("result.jpg", res_frame); |
| 297 | + } |
| 298 | + } |
| 299 | + |
| 300 | + |
| 301 | + return 0; |
| 302 | + |
| 303 | +} |
| 304 | + |
0 commit comments