-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.ts
283 lines (236 loc) · 7.07 KB
/
data.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
import { APIResource } from '../../resource';
import * as Core from '../../core';
export class Data extends APIResource {
/**
* Publish an inference data point to an inference pipeline.
*/
stream(
inferencePipelineId: string,
body: DataStreamParams,
options?: Core.RequestOptions,
): Core.APIPromise<DataStreamResponse> {
return this._client.post(`/inference-pipelines/${inferencePipelineId}/data-stream`, { body, ...options });
}
}
export interface DataStreamResponse {
success: true;
}
export interface DataStreamParams {
/**
* Configuration for the data stream. Depends on your **Openlayer project task
* type**.
*/
config:
| DataStreamParams.LlmData
| DataStreamParams.TabularClassificationData
| DataStreamParams.TabularRegressionData
| DataStreamParams.TextClassificationData;
/**
* A list of inference data points with inputs and outputs
*/
rows: Array<Record<string, unknown>>;
}
export namespace DataStreamParams {
export interface LlmData {
/**
* Name of the column with the model outputs.
*/
outputColumnName: string;
/**
* Name of the column with the context retrieved. Applies to RAG use cases.
* Providing the context enables RAG-specific metrics.
*/
contextColumnName?: string;
/**
* Name of the column with the cost associated with each row.
*/
costColumnName?: string;
/**
* Name of the column with the ground truths.
*/
groundTruthColumnName?: string;
/**
* Name of the column with the inference ids. This is useful if you want to update
* rows at a later point in time. If not provided, a unique id is generated by
* Openlayer.
*/
inferenceIdColumnName?: string;
/**
* Array of input variable names. Each input variable should be a dataset column.
*/
inputVariableNames?: Array<string>;
/**
* Name of the column with the latencies.
*/
latencyColumnName?: string;
/**
* Object with metadata.
*/
metadata?: unknown;
/**
* Name of the column with the total number of tokens.
*/
numOfTokenColumnName?: string | null;
/**
* Prompt for the LLM.
*/
prompt?: Array<LlmData.Prompt>;
/**
* Name of the column with the questions. Applies to RAG use cases. Providing the
* question enables RAG-specific metrics.
*/
questionColumnName?: string;
/**
* Name of the column with the timestamps. Timestamps must be in UNIX sec format.
* If not provided, the upload timestamp is used.
*/
timestampColumnName?: string;
}
export namespace LlmData {
export interface Prompt {
/**
* Content of the prompt.
*/
content?: string;
/**
* Role of the prompt.
*/
role?: string;
}
}
export interface TabularClassificationData {
/**
* List of class names indexed by label integer in the dataset. E.g. ["Retained",
* "Exited"] when 0, 1 are in your label column.
*/
classNames: Array<string>;
/**
* Array with the names of all categorical features in the dataset. E.g. ["Age",
* "Geography"].
*/
categoricalFeatureNames?: Array<string>;
/**
* Array with all input feature names.
*/
featureNames?: Array<string>;
/**
* Name of the column with the inference ids. This is useful if you want to update
* rows at a later point in time. If not provided, a unique id is generated by
* Openlayer.
*/
inferenceIdColumnName?: string;
/**
* Name of the column with the labels. The data in this column must be
* **zero-indexed integers**, matching the list provided in `classNames`.
*/
labelColumnName?: string;
/**
* Name of the column with the latencies.
*/
latencyColumnName?: string;
/**
* Object with metadata.
*/
metadata?: unknown;
/**
* Name of the column with the model's predictions as **zero-indexed integers**.
*/
predictionsColumnName?: string;
/**
* Name of the column with the model's predictions as **lists of class
* probabilities**.
*/
predictionScoresColumnName?: string;
/**
* Name of the column with the timestamps. Timestamps must be in UNIX sec format.
* If not provided, the upload timestamp is used.
*/
timestampColumnName?: string;
}
export interface TabularRegressionData {
/**
* Array with the names of all categorical features in the dataset. E.g. ["Gender",
* "Geography"].
*/
categoricalFeatureNames?: Array<string>;
/**
* Array with all input feature names.
*/
featureNames?: Array<string>;
/**
* Name of the column with the inference ids. This is useful if you want to update
* rows at a later point in time. If not provided, a unique id is generated by
* Openlayer.
*/
inferenceIdColumnName?: string;
/**
* Name of the column with the latencies.
*/
latencyColumnName?: string;
/**
* Object with metadata.
*/
metadata?: unknown;
/**
* Name of the column with the model's predictions.
*/
predictionsColumnName?: string;
/**
* Name of the column with the targets (ground truth values).
*/
targetColumnName?: string;
/**
* Name of the column with the timestamps. Timestamps must be in UNIX sec format.
* If not provided, the upload timestamp is used.
*/
timestampColumnName?: string;
}
export interface TextClassificationData {
/**
* List of class names indexed by label integer in the dataset. E.g. ["Retained",
* "Exited"] when 0, 1 are in your label column.
*/
classNames: Array<string>;
/**
* Name of the column with the inference ids. This is useful if you want to update
* rows at a later point in time. If not provided, a unique id is generated by
* Openlayer.
*/
inferenceIdColumnName?: string;
/**
* Name of the column with the labels. The data in this column must be
* **zero-indexed integers**, matching the list provided in `classNames`.
*/
labelColumnName?: string;
/**
* Name of the column with the latencies.
*/
latencyColumnName?: string;
/**
* Object with metadata.
*/
metadata?: unknown;
/**
* Name of the column with the model's predictions as **zero-indexed integers**.
*/
predictionsColumnName?: string;
/**
* Name of the column with the model's predictions as **lists of class
* probabilities**.
*/
predictionScoresColumnName?: string;
/**
* Name of the column with the text data.
*/
textColumnName?: string;
/**
* Name of the column with the timestamps. Timestamps must be in UNIX sec format.
* If not provided, the upload timestamp is used.
*/
timestampColumnName?: string;
}
}
export declare namespace Data {
export { type DataStreamResponse as DataStreamResponse, type DataStreamParams as DataStreamParams };
}