Skip to content

CUDA Error When Running Batch Inference with OpenLLama Model #93

@jcrangel

Description

@jcrangel

I'm attempting to evaluate an OpenLlama model on a test dataset. When I use single element inference, it's considerably slow, so I'm trying to utilize batching for efficiency. However, during batch inference, I'm encountering a CUDA error.
Error Message

../aten/src/ATen/native/cuda/Indexing.cu:1146: indexSelectLargeIndex: block: [277,0,0], thread: [125,0,0] Assertion 'srcIndex < srcSelectDimSize' failed.
../aten/src/ATen/native/cuda/Indexing.cu:1146: indexSelectLargeIndex: block: [277,0,0], thread: [126,0,0] Assertion 'srcIndex < srcSelectDimSize' failed.
../aten/src/ATen/native/cuda/Indexing.cu:1146: indexSelectLargeIndex: block: [277,0,0], thread: [127,0,0] Assertion 'srcIndex < srcSelectDimSize' failed.
...
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with 'TORCH_USE_CUDA_DSA' to enable device-side assertions.

Code for Batch Inference

from tqdm import tqdm

def make_batch_inference(dataset, batch_size=8):
all_out = []


progress_bar = tqdm(range(0, len(dataset), batch_size), desc="Inferencing")

for start_idx in progress_bar:
    end_idx = start_idx + batch_size
    batch_questions = dataset['question'][start_idx:end_idx]
    
    batch = tokenizer(batch_questions, return_tensors='pt', padding=True, truncation=True, max_length=512)

    with torch.cuda.amp.autocast():
        output_tokens = model.generate(
            input_ids=batch["input_ids"].to("cuda:0"), max_new_tokens=2048
        )

    batch_out = [extract_first_sparql(tokenizer.decode(tokens, skip_special_tokens=True)) for tokens in output_tokens]

    all_out.extend(batch_out)

return all_out

Loading data and dataset

test_data = load_data_from_file("data/kqapro_lcquad_test.json")
test_dataset = Dataset.from_dict(test_data)

results = make_batch_inference(test_dataset)

Additional Information

It's original a "openlm-research/open_llama_7b_v2" but I finetune it using peft. So I load the model using :

from peft import AutoPeftModelForCausalLM
device_map = {"": 0}
model = AutoPeftModelForCausalLM.from_pretrained(os.path.join(
    output_dir, 'saved_model'), device_map=device_map, torch_dtype=torch.bfloat16)
 tokenizer = LlamaTokenizer.from_pretrained(model_id)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})

Any assistance on this issue would be greatly appreciated. Thank you in advance!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions