-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo26.py
27 lines (23 loc) · 807 Bytes
/
demo26.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from sklearn import svm
from sklearn.decomposition import PCA
iris = datasets.load_iris()
pca = PCA(n_components=2)
data = pca.fit(iris.data).transform(iris.data)
print(pca.explained_variance_ratio_)
print(data.shape)
datamax = data.max(axis=0) + 1
datamin = data.min(axis=0) - 1
n = 4000
X, Y = np.meshgrid(np.linspace(datamin[0], datamax[0], n),
np.linspace(datamin[1], datamax[1], n))
svc = svm.SVC()
svc.fit(data, iris.target)
Z = svc.predict(np.c_[X.ravel(), Y.ravel()])
plt.contour(X, Y, Z.reshape(X.shape), levels=[-0.5, 0.5, 1.5, 2.5], colors=['c', 'm', 'y', 'k'])
for i, c in zip([0, 1, 2], ['r', 'g', 'b']):
d = data[iris.target == i]
plt.scatter(d[:, 0], d[:, 1], c=c, s=10)
plt.show()