-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo55.py
42 lines (37 loc) · 1.3 KB
/
demo55.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import tensorflow as tf
import keras
import numpy as np
import matplotlib.pyplot as plt
from keras import Sequential
from keras import layers
from keras.layers import Flatten
(train_images, train_labels), (test_images, test_labels) = keras.datasets.fashion_mnist.load_data()
print(train_images.shape, test_images.shape)
print(len(train_labels), len(test_labels))
print(np.unique(train_labels))
# plt.figure()
# plt.imshow(train_images[0])
# plt.colorbar()
# plt.grid(False)
# plt.show()
classNames = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot']
train_images = train_images / 255.0
test_images = test_images / 255.0
# plt.figure(figsize=(12, 8))
# for i in range(25):
# plt.subplot(5, 5, i + 1)
# plt.xticks([])
# plt.yticks([])
# plt.grid(False)
# plt.imshow(train_images[i], cmap=plt.cm.binary)
# plt.xlabel(classNames[train_labels[i]])
# plt.show()
model = Sequential()
model.add(Flatten(input_shape=(28, 28)))
model.add(layers.Dense(256, activation=tf.nn.relu))
model.add(layers.Dense(128, activation=tf.nn.relu))
model.add(layers.Dense(10, activation=tf.nn.softmax))
model.summary()
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=20)