-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo8.py
68 lines (52 loc) · 2.22 KB
/
demo8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
from sklearn import linear_model, datasets
'''
diabetes = datasets.load_diabetes()
print(type(diabetes))
print("X, features shape is:", diabetes.data.shape)
print("Y, labels shape is:", diabetes.target.shape, "\n")
dataForTest = -50
data_train = diabetes.data[:dataForTest]
target_train = diabetes.target[:dataForTest]
print("data trained shape:", data_train.shape)
print("target trained shape:", target_train.shape)
data_test = diabetes.data[dataForTest:]
target_test = diabetes.target[dataForTest:]
print("data test shape:", data_test.shape)
print("target test shape:", target_test.shape)
regression1 = linear_model.LinearRegression()
regression1.fit(data_train, target_train)
print(regression1, "\n") # put debug here
print("score:", regression1.score(data_test, target_test))
for i in range(dataForTest, 0):
# print(data_test[i].shape, data_test[i])
dataArray = np.array(data_test[i].reshape(1, -1))
# print(dataArray.shape, dataArray)
print(f"predict = {regression1.predict(dataArray)[0]:.1f}/ actual = {target_test[i]}")
'''
diabetes = datasets.load_diabetes()
print(type(diabetes))
print("X, features shape is:", diabetes.data.shape)
print("Y, labels shape is:", diabetes.target.shape, "\n")
dataForTest = -50
data_train = diabetes.data[:dataForTest]
target_train = diabetes.target[:dataForTest]
print("data trained shape:", data_train.shape)
print("target trained shape:", target_train.shape)
data_test = diabetes.data[dataForTest:]
target_test = diabetes.target[dataForTest:]
print("data test shape:", data_test.shape)
print("target test shape:", target_test.shape)
regression1 = linear_model.LinearRegression()
regression1.fit(data_train, target_train)
print(regression1, "\n") # put debug here
print("score:", regression1.score(data_test, target_test))
predicts = regression1.predict(data_test)
print(f"predicts shape = {predicts.shape}")
for i in range(len(predicts)):
print(f"predict = {predicts[i]:.1f}/ actual = {target_test[-50+ i]},")
# for i in range(dataForTest, 0):
# print(data_test[i].shape, data_test[i])
# dataArray = np.array(data_test[i].reshape(1, -1))
# print(dataArray.shape, dataArray)
# print(f"predict = {regression1.predict(dataArray)[0]:.1f}/ actual = {target_test[i]}")