|
| 1 | +# Copyright 2019 Optimizely |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# |
| 6 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +# |
| 8 | +# Unless required by applicable law or agreed to in writing, software |
| 9 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 10 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 11 | +# See the License for the specific language governing permissions and |
| 12 | +# limitations under the License. |
| 13 | + |
| 14 | +import abc |
| 15 | +import threading |
| 16 | +import time |
| 17 | + |
| 18 | +from datetime import timedelta |
| 19 | +from six.moves import queue |
| 20 | + |
| 21 | +from optimizely import logger as _logging |
| 22 | +from optimizely.event_dispatcher import EventDispatcher as default_event_dispatcher |
| 23 | +from optimizely.helpers import validator |
| 24 | +from .event_factory import EventFactory |
| 25 | +from .user_event import UserEvent |
| 26 | + |
| 27 | +ABC = abc.ABCMeta('ABC', (object,), {'__slots__': ()}) |
| 28 | + |
| 29 | + |
| 30 | +class BaseEventProcessor(ABC): |
| 31 | + """ Class encapsulating event processing. Override with your own implementation. """ |
| 32 | + |
| 33 | + @abc.abstractmethod |
| 34 | + def process(user_event): |
| 35 | + """ Method to provide intermediary processing stage within event production. |
| 36 | + Args: |
| 37 | + user_event: UserEvent instance that needs to be processed and dispatched. |
| 38 | + """ |
| 39 | + pass |
| 40 | + |
| 41 | + |
| 42 | +class BatchEventProcessor(BaseEventProcessor): |
| 43 | + """ |
| 44 | + BatchEventProcessor is an implementation of the BaseEventProcessor that batches events. |
| 45 | + The BatchEventProcessor maintains a single consumer thread that pulls events off of |
| 46 | + the blocking queue and buffers them for either a configured batch size or for a |
| 47 | + maximum duration before the resulting LogEvent is sent to the EventDispatcher. |
| 48 | + """ |
| 49 | + |
| 50 | + _DEFAULT_QUEUE_CAPACITY = 1000 |
| 51 | + _DEFAULT_BATCH_SIZE = 10 |
| 52 | + _DEFAULT_FLUSH_INTERVAL = timedelta(seconds=30) |
| 53 | + _DEFAULT_TIMEOUT_INTERVAL = timedelta(seconds=5) |
| 54 | + _SHUTDOWN_SIGNAL = object() |
| 55 | + _FLUSH_SIGNAL = object() |
| 56 | + LOCK = threading.Lock() |
| 57 | + |
| 58 | + def __init__(self, |
| 59 | + event_dispatcher, |
| 60 | + logger, |
| 61 | + start_on_init=False, |
| 62 | + event_queue=None, |
| 63 | + batch_size=None, |
| 64 | + flush_interval=None, |
| 65 | + timeout_interval=None): |
| 66 | + """ BatchEventProcessor init method to configure event batching. |
| 67 | + Args: |
| 68 | + event_dispatcher: Provides a dispatch_event method which if given a URL and params sends a request to it. |
| 69 | + logger: Provides a log method to log messages. By default nothing would be logged. |
| 70 | + start_on_init: Optional boolean param which starts the consumer thread if set to True. |
| 71 | + Default value is False. |
| 72 | + event_queue: Optional component which accumulates the events until dispacthed. |
| 73 | + batch_size: Optional param which defines the upper limit on the number of events in event_queue after which |
| 74 | + the event_queue will be flushed. |
| 75 | + flush_interval: Optional floating point number representing time interval in seconds after which event_queue will |
| 76 | + be flushed. |
| 77 | + timeout_interval: Optional floating point number representing time interval in seconds before joining the consumer |
| 78 | + thread. |
| 79 | + """ |
| 80 | + self.event_dispatcher = event_dispatcher or default_event_dispatcher |
| 81 | + self.logger = _logging.adapt_logger(logger or _logging.NoOpLogger()) |
| 82 | + self.event_queue = event_queue or queue.Queue(maxsize=self._DEFAULT_QUEUE_CAPACITY) |
| 83 | + self.batch_size = batch_size if self._validate_intantiation_props(batch_size, 'batch_size') \ |
| 84 | + else self._DEFAULT_BATCH_SIZE |
| 85 | + self.flush_interval = timedelta(seconds=flush_interval) \ |
| 86 | + if self._validate_intantiation_props(flush_interval, 'flush_interval') \ |
| 87 | + else self._DEFAULT_FLUSH_INTERVAL |
| 88 | + self.timeout_interval = timedelta(seconds=timeout_interval) \ |
| 89 | + if self._validate_intantiation_props(timeout_interval, 'timeout_interval') \ |
| 90 | + else self._DEFAULT_TIMEOUT_INTERVAL |
| 91 | + self._current_batch = list() |
| 92 | + |
| 93 | + if start_on_init is True: |
| 94 | + self.start() |
| 95 | + |
| 96 | + @property |
| 97 | + def is_running(self): |
| 98 | + """ Property to check if consumer thread is alive or not. """ |
| 99 | + return self.executor.isAlive() |
| 100 | + |
| 101 | + def _validate_intantiation_props(self, prop, prop_name): |
| 102 | + """ Method to determine if instantiation properties like batch_size, flush_interval |
| 103 | + and timeout_interval are valid. |
| 104 | +
|
| 105 | + Args: |
| 106 | + prop: Property value that needs to be validated. |
| 107 | + prop_name: Property name. |
| 108 | +
|
| 109 | + Returns: |
| 110 | + False if property value is None or less than 1 or not a finite number. |
| 111 | + False if property name is batch_size and value is a floating point number. |
| 112 | + True otherwise. |
| 113 | + """ |
| 114 | + if (prop_name == 'batch_size' and not isinstance(prop, int)) or prop is None or prop < 1 or \ |
| 115 | + not validator.is_finite_number(prop): |
| 116 | + self.logger.info('Using default value for {}.'.format(prop_name)) |
| 117 | + return False |
| 118 | + |
| 119 | + return True |
| 120 | + |
| 121 | + def _get_time(self, _time=None): |
| 122 | + """ Method to return rounded off time as integer in seconds. If _time is None, uses current time. |
| 123 | +
|
| 124 | + Args: |
| 125 | + _time: time in seconds that needs to be rounded off. |
| 126 | +
|
| 127 | + Returns: |
| 128 | + Integer time in seconds. |
| 129 | + """ |
| 130 | + if _time is None: |
| 131 | + return int(round(time.time())) |
| 132 | + |
| 133 | + return int(round(_time)) |
| 134 | + |
| 135 | + def start(self): |
| 136 | + """ Starts the batch processing thread to batch events. """ |
| 137 | + if hasattr(self, 'executor') and self.is_running: |
| 138 | + self.logger.warning('BatchEventProcessor already started.') |
| 139 | + return |
| 140 | + |
| 141 | + self.flushing_interval_deadline = self._get_time() + self._get_time(self.flush_interval.total_seconds()) |
| 142 | + self.executor = threading.Thread(target=self._run) |
| 143 | + self.executor.setDaemon(True) |
| 144 | + self.executor.start() |
| 145 | + |
| 146 | + def _run(self): |
| 147 | + """ Triggered as part of the thread which batches events or flushes event_queue and sleeps |
| 148 | + periodically if queue is empty. |
| 149 | + """ |
| 150 | + try: |
| 151 | + while True: |
| 152 | + if self._get_time() > self.flushing_interval_deadline: |
| 153 | + self._flush_queue() |
| 154 | + |
| 155 | + try: |
| 156 | + item = self.event_queue.get(True, 0.05) |
| 157 | + |
| 158 | + except queue.Empty: |
| 159 | + time.sleep(0.05) |
| 160 | + continue |
| 161 | + |
| 162 | + if item == self._SHUTDOWN_SIGNAL: |
| 163 | + self.logger.debug('Received shutdown signal.') |
| 164 | + break |
| 165 | + |
| 166 | + if item == self._FLUSH_SIGNAL: |
| 167 | + self.logger.debug('Received flush signal.') |
| 168 | + self._flush_queue() |
| 169 | + continue |
| 170 | + |
| 171 | + if isinstance(item, UserEvent): |
| 172 | + self._add_to_batch(item) |
| 173 | + |
| 174 | + except Exception as exception: |
| 175 | + self.logger.error('Uncaught exception processing buffer. Error: ' + str(exception)) |
| 176 | + |
| 177 | + finally: |
| 178 | + self.logger.info('Exiting processing loop. Attempting to flush pending events.') |
| 179 | + self._flush_queue() |
| 180 | + |
| 181 | + def flush(self): |
| 182 | + """ Adds flush signal to event_queue. """ |
| 183 | + |
| 184 | + self.event_queue.put(self._FLUSH_SIGNAL) |
| 185 | + |
| 186 | + def _flush_queue(self): |
| 187 | + """ Flushes event_queue by dispatching events. """ |
| 188 | + |
| 189 | + if len(self._current_batch) == 0: |
| 190 | + return |
| 191 | + |
| 192 | + with self.LOCK: |
| 193 | + to_process_batch = list(self._current_batch) |
| 194 | + self._current_batch = list() |
| 195 | + |
| 196 | + log_event = EventFactory.create_log_event(to_process_batch, self.logger) |
| 197 | + |
| 198 | + try: |
| 199 | + self.event_dispatcher.dispatch_event(log_event) |
| 200 | + except Exception as e: |
| 201 | + self.logger.error('Error dispatching event: ' + str(log_event) + ' ' + str(e)) |
| 202 | + |
| 203 | + def process(self, user_event): |
| 204 | + """ Method to process the user_event by putting it in event_queue. |
| 205 | + Args: |
| 206 | + user_event: UserEvent Instance. |
| 207 | + """ |
| 208 | + if not isinstance(user_event, UserEvent): |
| 209 | + self.logger.error('Provided event is in an invalid format.') |
| 210 | + return |
| 211 | + |
| 212 | + self.logger.debug('Received user_event: ' + str(user_event)) |
| 213 | + |
| 214 | + try: |
| 215 | + self.event_queue.put_nowait(user_event) |
| 216 | + except queue.Full: |
| 217 | + self.logger.debug('Payload not accepted by the queue. Current size: {}'.format(str(self.event_queue.qsize()))) |
| 218 | + |
| 219 | + def _add_to_batch(self, user_event): |
| 220 | + """ Method to append received user event to current batch. |
| 221 | + Args: |
| 222 | + user_event: UserEvent Instance. |
| 223 | + """ |
| 224 | + if self._should_split(user_event): |
| 225 | + self._flush_queue() |
| 226 | + self._current_batch = list() |
| 227 | + |
| 228 | + # Reset the deadline if starting a new batch. |
| 229 | + if len(self._current_batch) == 0: |
| 230 | + self.flushing_interval_deadline = self._get_time() + \ |
| 231 | + self._get_time(self.flush_interval.total_seconds()) |
| 232 | + |
| 233 | + with self.LOCK: |
| 234 | + self._current_batch.append(user_event) |
| 235 | + if len(self._current_batch) >= self.batch_size: |
| 236 | + self._flush_queue() |
| 237 | + |
| 238 | + def _should_split(self, user_event): |
| 239 | + """ Method to check if current event batch should split into two. |
| 240 | + Args: |
| 241 | + user_event: UserEvent Instance. |
| 242 | + Return Value: |
| 243 | + - True, if revision number and project_id of last event in current batch do not match received event's |
| 244 | + revision number and project id respectively. |
| 245 | + - False, otherwise. |
| 246 | + """ |
| 247 | + if len(self._current_batch) == 0: |
| 248 | + return False |
| 249 | + |
| 250 | + current_context = self._current_batch[-1].event_context |
| 251 | + new_context = user_event.event_context |
| 252 | + |
| 253 | + if current_context.revision != new_context.revision: |
| 254 | + return True |
| 255 | + |
| 256 | + if current_context.project_id != new_context.project_id: |
| 257 | + return True |
| 258 | + |
| 259 | + return False |
| 260 | + |
| 261 | + def stop(self): |
| 262 | + """ Stops and disposes batch event processor. """ |
| 263 | + self.event_queue.put(self._SHUTDOWN_SIGNAL) |
| 264 | + self.logger.warning('Stopping Scheduler.') |
| 265 | + |
| 266 | + self.executor.join(self.timeout_interval.total_seconds()) |
| 267 | + |
| 268 | + if self.is_running: |
| 269 | + self.logger.error('Timeout exceeded while attempting to close for ' + str(self.timeout_interval) + ' ms.') |
0 commit comments