forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14511f40-47db-4c94-b35b-70616770fd2d.txt
2165 lines (2092 loc) · 134 KB
/
14511f40-47db-4c94-b35b-70616770fd2d.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:09:56 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 87W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 92W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 110W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 115W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 43MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31580ms step_avg:nanms
step:2/1530 train_loss:10.0845 train_time:31691ms step_avg:nanms
step:3/1530 train_loss:8.3786 train_time:31850ms step_avg:nanms
step:4/1530 train_loss:7.5787 train_time:32011ms step_avg:nanms
step:5/1530 train_loss:7.4763 train_time:32170ms step_avg:nanms
step:6/1530 train_loss:6.9768 train_time:32331ms step_avg:nanms
step:7/1530 train_loss:7.2298 train_time:32490ms step_avg:nanms
step:8/1530 train_loss:6.7415 train_time:32651ms step_avg:nanms
step:9/1530 train_loss:6.6388 train_time:32810ms step_avg:nanms
step:10/1530 train_loss:6.5073 train_time:32972ms step_avg:nanms
step:11/1530 train_loss:6.4546 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3340 train_time:273ms step_avg:nanms
step:13/1530 train_loss:6.2629 train_time:434ms step_avg:144.65ms
step:14/1530 train_loss:6.2169 train_time:594ms step_avg:148.58ms
step:15/1530 train_loss:6.1803 train_time:755ms step_avg:150.93ms
step:16/1530 train_loss:6.0939 train_time:914ms step_avg:152.40ms
step:17/1530 train_loss:6.1679 train_time:1074ms step_avg:153.42ms
step:18/1530 train_loss:5.9524 train_time:1234ms step_avg:154.28ms
step:19/1530 train_loss:5.9884 train_time:1394ms step_avg:154.85ms
step:20/1530 train_loss:5.6870 train_time:1555ms step_avg:155.47ms
step:21/1530 train_loss:5.9818 train_time:1715ms step_avg:155.90ms
step:22/1530 train_loss:6.2089 train_time:1875ms step_avg:156.23ms
step:23/1530 train_loss:5.8594 train_time:2035ms step_avg:156.57ms
step:24/1530 train_loss:6.0209 train_time:2196ms step_avg:156.89ms
step:25/1530 train_loss:5.7061 train_time:2358ms step_avg:157.18ms
step:26/1530 train_loss:5.6019 train_time:2517ms step_avg:157.32ms
step:27/1530 train_loss:5.8138 train_time:2677ms step_avg:157.49ms
step:28/1530 train_loss:5.4055 train_time:2838ms step_avg:157.67ms
step:29/1530 train_loss:5.6877 train_time:2998ms step_avg:157.80ms
step:30/1530 train_loss:5.4769 train_time:3159ms step_avg:157.97ms
step:31/1530 train_loss:5.4511 train_time:3320ms step_avg:158.10ms
step:32/1530 train_loss:5.2849 train_time:3481ms step_avg:158.22ms
step:33/1530 train_loss:5.5893 train_time:3642ms step_avg:158.35ms
step:34/1530 train_loss:5.5091 train_time:3802ms step_avg:158.43ms
step:35/1530 train_loss:5.6442 train_time:3964ms step_avg:158.54ms
step:36/1530 train_loss:5.5421 train_time:4124ms step_avg:158.60ms
step:37/1530 train_loss:5.4486 train_time:4284ms step_avg:158.68ms
step:38/1530 train_loss:5.3039 train_time:4447ms step_avg:158.84ms
step:39/1530 train_loss:5.3406 train_time:4608ms step_avg:158.89ms
step:40/1530 train_loss:5.2459 train_time:4769ms step_avg:158.96ms
step:41/1530 train_loss:5.2257 train_time:4929ms step_avg:159.01ms
step:42/1530 train_loss:5.1628 train_time:5090ms step_avg:159.07ms
step:43/1530 train_loss:5.2646 train_time:5251ms step_avg:159.12ms
step:44/1530 train_loss:5.2129 train_time:5411ms step_avg:159.15ms
step:45/1530 train_loss:5.3808 train_time:5570ms step_avg:159.15ms
step:46/1530 train_loss:5.1819 train_time:5730ms step_avg:159.16ms
step:47/1530 train_loss:5.0727 train_time:5890ms step_avg:159.20ms
step:48/1530 train_loss:5.2071 train_time:6053ms step_avg:159.28ms
step:49/1530 train_loss:5.1431 train_time:6212ms step_avg:159.27ms
step:50/1530 train_loss:5.2569 train_time:6373ms step_avg:159.33ms
step:51/1530 train_loss:5.1429 train_time:6534ms step_avg:159.35ms
step:52/1530 train_loss:5.0284 train_time:6694ms step_avg:159.39ms
step:53/1530 train_loss:5.1664 train_time:6853ms step_avg:159.38ms
step:54/1530 train_loss:5.0032 train_time:7014ms step_avg:159.40ms
step:55/1530 train_loss:5.4097 train_time:7175ms step_avg:159.44ms
step:56/1530 train_loss:5.0138 train_time:7335ms step_avg:159.47ms
step:57/1530 train_loss:4.8824 train_time:7494ms step_avg:159.44ms
step:58/1530 train_loss:5.0630 train_time:7655ms step_avg:159.47ms
step:59/1530 train_loss:5.0371 train_time:7814ms step_avg:159.48ms
step:60/1530 train_loss:5.1439 train_time:7974ms step_avg:159.48ms
step:61/1530 train_loss:4.8633 train_time:8135ms step_avg:159.51ms
step:62/1530 train_loss:5.0002 train_time:8296ms step_avg:159.54ms
step:63/1530 train_loss:4.9864 train_time:8456ms step_avg:159.54ms
step:64/1530 train_loss:5.0329 train_time:8617ms step_avg:159.58ms
step:65/1530 train_loss:4.8079 train_time:8777ms step_avg:159.58ms
step:66/1530 train_loss:4.9039 train_time:8939ms step_avg:159.62ms
step:67/1530 train_loss:4.8030 train_time:9097ms step_avg:159.60ms
step:68/1530 train_loss:5.0944 train_time:9259ms step_avg:159.64ms
step:69/1530 train_loss:4.7149 train_time:9421ms step_avg:159.67ms
step:70/1530 train_loss:4.8313 train_time:9581ms step_avg:159.69ms
step:71/1530 train_loss:4.9591 train_time:9742ms step_avg:159.71ms
step:72/1530 train_loss:4.8767 train_time:9902ms step_avg:159.71ms
step:73/1530 train_loss:4.7733 train_time:10064ms step_avg:159.74ms
step:74/1530 train_loss:4.9156 train_time:10225ms step_avg:159.76ms
step:75/1530 train_loss:4.8650 train_time:10385ms step_avg:159.77ms
step:76/1530 train_loss:4.7969 train_time:10546ms step_avg:159.79ms
step:77/1530 train_loss:4.9236 train_time:10706ms step_avg:159.79ms
step:78/1530 train_loss:5.1020 train_time:10867ms step_avg:159.81ms
step:79/1530 train_loss:4.8175 train_time:11028ms step_avg:159.83ms
step:80/1530 train_loss:4.8560 train_time:11189ms step_avg:159.84ms
step:81/1530 train_loss:4.6587 train_time:11350ms step_avg:159.86ms
step:82/1530 train_loss:4.8202 train_time:11511ms step_avg:159.87ms
step:83/1530 train_loss:4.7664 train_time:11670ms step_avg:159.86ms
step:84/1530 train_loss:4.7724 train_time:11832ms step_avg:159.89ms
step:85/1530 train_loss:4.6173 train_time:11992ms step_avg:159.89ms
step:86/1530 train_loss:4.8215 train_time:12152ms step_avg:159.89ms
step:87/1530 train_loss:4.7381 train_time:12311ms step_avg:159.88ms
step:88/1530 train_loss:4.7339 train_time:12472ms step_avg:159.90ms
step:89/1530 train_loss:4.6918 train_time:12632ms step_avg:159.90ms
step:90/1530 train_loss:4.6334 train_time:12792ms step_avg:159.90ms
step:91/1530 train_loss:4.6225 train_time:12952ms step_avg:159.91ms
step:92/1530 train_loss:4.7881 train_time:13113ms step_avg:159.92ms
step:93/1530 train_loss:4.6047 train_time:13273ms step_avg:159.91ms
step:94/1530 train_loss:4.6299 train_time:13433ms step_avg:159.91ms
step:95/1530 train_loss:4.6754 train_time:13593ms step_avg:159.91ms
step:96/1530 train_loss:4.5901 train_time:13754ms step_avg:159.93ms
step:97/1530 train_loss:4.6440 train_time:13913ms step_avg:159.92ms
step:98/1530 train_loss:4.5744 train_time:14073ms step_avg:159.92ms
step:99/1530 train_loss:4.6593 train_time:14234ms step_avg:159.93ms
step:100/1530 train_loss:4.6827 train_time:14395ms step_avg:159.94ms
step:101/1530 train_loss:4.5377 train_time:14554ms step_avg:159.94ms
step:102/1530 train_loss:4.6922 train_time:14714ms step_avg:159.94ms
step:103/1530 train_loss:4.5627 train_time:14875ms step_avg:159.94ms
step:104/1530 train_loss:4.5268 train_time:15035ms step_avg:159.95ms
step:105/1530 train_loss:4.5568 train_time:15194ms step_avg:159.94ms
step:106/1530 train_loss:4.6087 train_time:15356ms step_avg:159.96ms
step:107/1530 train_loss:4.5079 train_time:15515ms step_avg:159.95ms
step:108/1530 train_loss:4.3675 train_time:15675ms step_avg:159.95ms
step:109/1530 train_loss:4.4885 train_time:15836ms step_avg:159.96ms
step:110/1530 train_loss:4.4799 train_time:15997ms step_avg:159.97ms
step:111/1530 train_loss:4.4266 train_time:16160ms step_avg:160.00ms
step:112/1530 train_loss:4.5873 train_time:16321ms step_avg:160.01ms
step:113/1530 train_loss:4.4976 train_time:16482ms step_avg:160.02ms
step:114/1530 train_loss:4.3621 train_time:16643ms step_avg:160.02ms
step:115/1530 train_loss:4.4996 train_time:16805ms step_avg:160.05ms
step:116/1530 train_loss:4.4639 train_time:16970ms step_avg:160.09ms
step:117/1530 train_loss:4.3735 train_time:17135ms step_avg:160.14ms
step:118/1530 train_loss:4.5960 train_time:17300ms step_avg:160.18ms
step:119/1530 train_loss:4.4759 train_time:17465ms step_avg:160.22ms
step:120/1530 train_loss:4.3401 train_time:17628ms step_avg:160.25ms
step:121/1530 train_loss:4.3038 train_time:17791ms step_avg:160.28ms
step:122/1530 train_loss:4.4607 train_time:17955ms step_avg:160.31ms
step:123/1530 train_loss:4.2962 train_time:18118ms step_avg:160.34ms
step:124/1530 train_loss:4.5849 train_time:18282ms step_avg:160.37ms
step:125/1530 train_loss:4.4555 train_time:18447ms step_avg:160.41ms
step:125/1530 val_loss:4.4099 train_time:18494ms step_avg:160.82ms
step:126/1530 train_loss:4.4245 train_time:18613ms step_avg:160.46ms
step:127/1530 train_loss:4.4469 train_time:18778ms step_avg:160.50ms
step:128/1530 train_loss:4.3747 train_time:18943ms step_avg:160.53ms
step:129/1530 train_loss:4.6838 train_time:19107ms step_avg:160.56ms
step:130/1530 train_loss:4.3637 train_time:19271ms step_avg:160.59ms
step:131/1530 train_loss:4.4018 train_time:19435ms step_avg:160.62ms
step:132/1530 train_loss:4.3519 train_time:19599ms step_avg:160.65ms
step:133/1530 train_loss:4.4600 train_time:19764ms step_avg:160.68ms
step:134/1530 train_loss:4.2805 train_time:19928ms step_avg:160.71ms
step:135/1530 train_loss:4.4526 train_time:20092ms step_avg:160.74ms
step:136/1530 train_loss:4.2147 train_time:20256ms step_avg:160.76ms
step:137/1530 train_loss:4.3749 train_time:20421ms step_avg:160.80ms
step:138/1530 train_loss:4.2796 train_time:20585ms step_avg:160.82ms
step:139/1530 train_loss:4.3851 train_time:20750ms step_avg:160.85ms
step:140/1530 train_loss:4.4761 train_time:20914ms step_avg:160.87ms
step:141/1530 train_loss:4.3298 train_time:21079ms step_avg:160.90ms
step:142/1530 train_loss:4.3071 train_time:21242ms step_avg:160.92ms
step:143/1530 train_loss:4.2667 train_time:21406ms step_avg:160.95ms
step:144/1530 train_loss:4.3653 train_time:21570ms step_avg:160.97ms
step:145/1530 train_loss:4.3199 train_time:21733ms step_avg:160.99ms
step:146/1530 train_loss:4.1805 train_time:21898ms step_avg:161.01ms
step:147/1530 train_loss:4.3290 train_time:22063ms step_avg:161.04ms
step:148/1530 train_loss:4.3635 train_time:22226ms step_avg:161.06ms
step:149/1530 train_loss:4.3208 train_time:22389ms step_avg:161.07ms
step:150/1530 train_loss:4.4633 train_time:22553ms step_avg:161.09ms
step:151/1530 train_loss:4.2809 train_time:22716ms step_avg:161.11ms
step:152/1530 train_loss:4.2778 train_time:22880ms step_avg:161.13ms
step:153/1530 train_loss:4.3666 train_time:23044ms step_avg:161.15ms
step:154/1530 train_loss:4.3771 train_time:23208ms step_avg:161.17ms
step:155/1530 train_loss:4.2758 train_time:23371ms step_avg:161.18ms
step:156/1530 train_loss:4.3624 train_time:23535ms step_avg:161.20ms
step:157/1530 train_loss:4.4252 train_time:23698ms step_avg:161.21ms
step:158/1530 train_loss:4.2601 train_time:23862ms step_avg:161.23ms
step:159/1530 train_loss:4.3324 train_time:24026ms step_avg:161.25ms
step:160/1530 train_loss:4.1449 train_time:24189ms step_avg:161.26ms
step:161/1530 train_loss:4.3639 train_time:24353ms step_avg:161.28ms
step:162/1530 train_loss:4.3676 train_time:24516ms step_avg:161.29ms
step:163/1530 train_loss:4.3535 train_time:24679ms step_avg:161.30ms
step:164/1530 train_loss:4.1857 train_time:24844ms step_avg:161.33ms
step:165/1530 train_loss:4.2869 train_time:25009ms step_avg:161.35ms
step:166/1530 train_loss:4.3439 train_time:25172ms step_avg:161.36ms
step:167/1530 train_loss:4.2076 train_time:25337ms step_avg:161.38ms
step:168/1530 train_loss:4.2928 train_time:25500ms step_avg:161.39ms
step:169/1530 train_loss:4.1740 train_time:25664ms step_avg:161.41ms
step:170/1530 train_loss:4.0291 train_time:25827ms step_avg:161.42ms
step:171/1530 train_loss:4.2194 train_time:25990ms step_avg:161.43ms
step:172/1530 train_loss:4.2099 train_time:26153ms step_avg:161.44ms
step:173/1530 train_loss:4.2778 train_time:26316ms step_avg:161.45ms
step:174/1530 train_loss:4.4350 train_time:26479ms step_avg:161.45ms
step:175/1530 train_loss:4.2560 train_time:26642ms step_avg:161.47ms
step:176/1530 train_loss:4.1003 train_time:26805ms step_avg:161.48ms
step:177/1530 train_loss:4.0710 train_time:26968ms step_avg:161.48ms
step:178/1530 train_loss:4.1892 train_time:27131ms step_avg:161.50ms
step:179/1530 train_loss:4.1315 train_time:27294ms step_avg:161.50ms
step:180/1530 train_loss:4.1174 train_time:27456ms step_avg:161.51ms
step:181/1530 train_loss:4.3000 train_time:27619ms step_avg:161.51ms
step:182/1530 train_loss:4.1659 train_time:27782ms step_avg:161.52ms
step:183/1530 train_loss:4.1506 train_time:27946ms step_avg:161.54ms
step:184/1530 train_loss:4.1262 train_time:28110ms step_avg:161.55ms
step:185/1530 train_loss:4.2236 train_time:28272ms step_avg:161.56ms
step:186/1530 train_loss:4.1791 train_time:28436ms step_avg:161.57ms
step:187/1530 train_loss:4.2369 train_time:28599ms step_avg:161.57ms
step:188/1530 train_loss:4.1727 train_time:28891ms step_avg:162.31ms
step:189/1530 train_loss:4.1165 train_time:29223ms step_avg:163.26ms
step:190/1530 train_loss:4.2168 train_time:29383ms step_avg:163.24ms
step:191/1530 train_loss:4.0880 train_time:29546ms step_avg:163.24ms
step:192/1530 train_loss:4.0390 train_time:29709ms step_avg:163.24ms
step:193/1530 train_loss:4.2721 train_time:29873ms step_avg:163.24ms
step:194/1530 train_loss:4.1819 train_time:30036ms step_avg:163.24ms
step:195/1530 train_loss:4.3558 train_time:30198ms step_avg:163.23ms
step:196/1530 train_loss:4.1841 train_time:30361ms step_avg:163.23ms
step:197/1530 train_loss:4.0556 train_time:30525ms step_avg:163.23ms
step:198/1530 train_loss:4.1863 train_time:30686ms step_avg:163.22ms
step:199/1530 train_loss:4.0456 train_time:30850ms step_avg:163.23ms
step:200/1530 train_loss:4.1247 train_time:31013ms step_avg:163.23ms
step:201/1530 train_loss:4.0424 train_time:31176ms step_avg:163.22ms
step:202/1530 train_loss:4.2740 train_time:31340ms step_avg:163.23ms
step:203/1530 train_loss:4.0815 train_time:31502ms step_avg:163.23ms
step:204/1530 train_loss:4.2009 train_time:31666ms step_avg:163.23ms
step:205/1530 train_loss:4.2608 train_time:31829ms step_avg:163.23ms
step:206/1530 train_loss:3.9527 train_time:31991ms step_avg:163.22ms
step:207/1530 train_loss:4.1003 train_time:32154ms step_avg:163.22ms
step:208/1530 train_loss:4.1167 train_time:32318ms step_avg:163.22ms
step:209/1530 train_loss:4.2511 train_time:32481ms step_avg:163.22ms
step:210/1530 train_loss:4.1745 train_time:32645ms step_avg:163.23ms
step:211/1530 train_loss:4.0666 train_time:32808ms step_avg:163.22ms
step:212/1530 train_loss:4.1442 train_time:32970ms step_avg:163.22ms
step:213/1530 train_loss:4.0555 train_time:33133ms step_avg:163.21ms
step:214/1530 train_loss:4.1237 train_time:33296ms step_avg:163.21ms
step:215/1530 train_loss:3.9588 train_time:33459ms step_avg:163.21ms
step:216/1530 train_loss:4.0177 train_time:33622ms step_avg:163.22ms
step:217/1530 train_loss:4.0258 train_time:33785ms step_avg:163.21ms
step:218/1530 train_loss:4.0942 train_time:33950ms step_avg:163.22ms
step:219/1530 train_loss:4.0781 train_time:34112ms step_avg:163.22ms
step:220/1530 train_loss:4.0916 train_time:34275ms step_avg:163.21ms
step:221/1530 train_loss:4.1024 train_time:34439ms step_avg:163.22ms
step:222/1530 train_loss:4.0084 train_time:34602ms step_avg:163.22ms
step:223/1530 train_loss:4.0047 train_time:34765ms step_avg:163.22ms
step:224/1530 train_loss:4.3048 train_time:34929ms step_avg:163.22ms
step:225/1530 train_loss:3.9294 train_time:35091ms step_avg:163.22ms
step:226/1530 train_loss:3.9982 train_time:35254ms step_avg:163.21ms
step:227/1530 train_loss:3.9792 train_time:35417ms step_avg:163.21ms
step:228/1530 train_loss:4.1460 train_time:35582ms step_avg:163.22ms
step:229/1530 train_loss:3.9297 train_time:35749ms step_avg:163.24ms
step:230/1530 train_loss:4.0467 train_time:35915ms step_avg:163.25ms
step:231/1530 train_loss:3.9172 train_time:36082ms step_avg:163.27ms
step:232/1530 train_loss:3.9755 train_time:36248ms step_avg:163.28ms
step:233/1530 train_loss:4.0973 train_time:36415ms step_avg:163.29ms
step:234/1530 train_loss:4.0284 train_time:36581ms step_avg:163.31ms
step:235/1530 train_loss:3.9123 train_time:36748ms step_avg:163.32ms
step:236/1530 train_loss:4.0904 train_time:36914ms step_avg:163.33ms
step:237/1530 train_loss:4.0903 train_time:37080ms step_avg:163.35ms
step:238/1530 train_loss:3.9559 train_time:37247ms step_avg:163.36ms
step:239/1530 train_loss:4.0800 train_time:37413ms step_avg:163.38ms
step:240/1530 train_loss:4.1215 train_time:37580ms step_avg:163.39ms
step:241/1530 train_loss:3.9765 train_time:37747ms step_avg:163.41ms
step:242/1530 train_loss:4.1613 train_time:37913ms step_avg:163.42ms
step:243/1530 train_loss:4.0199 train_time:38080ms step_avg:163.43ms
step:244/1530 train_loss:4.0836 train_time:38245ms step_avg:163.44ms
step:245/1530 train_loss:4.1490 train_time:38411ms step_avg:163.45ms
step:246/1530 train_loss:4.0623 train_time:38578ms step_avg:163.47ms
step:247/1530 train_loss:4.0153 train_time:38743ms step_avg:163.47ms
step:248/1530 train_loss:4.1117 train_time:38909ms step_avg:163.48ms
step:249/1530 train_loss:3.9349 train_time:39074ms step_avg:163.49ms
step:250/1530 train_loss:3.9837 train_time:39242ms step_avg:163.51ms
step:250/1530 val_loss:4.0224 train_time:39289ms step_avg:163.70ms
step:251/1530 train_loss:4.0929 train_time:39412ms step_avg:163.54ms
step:252/1530 train_loss:4.1726 train_time:39581ms step_avg:163.56ms
step:253/1530 train_loss:3.9440 train_time:39749ms step_avg:163.58ms
step:254/1530 train_loss:3.8842 train_time:39916ms step_avg:163.59ms
step:255/1530 train_loss:4.0846 train_time:40081ms step_avg:163.60ms
step:256/1530 train_loss:4.0049 train_time:40248ms step_avg:163.61ms
step:257/1530 train_loss:3.9970 train_time:40414ms step_avg:163.62ms
step:258/1530 train_loss:3.9923 train_time:40580ms step_avg:163.63ms
step:259/1530 train_loss:4.0359 train_time:40746ms step_avg:163.64ms
step:260/1530 train_loss:4.0605 train_time:40913ms step_avg:163.65ms
step:261/1530 train_loss:4.0293 train_time:41079ms step_avg:163.66ms
step:262/1530 train_loss:4.0018 train_time:41245ms step_avg:163.67ms
step:263/1530 train_loss:3.9084 train_time:41412ms step_avg:163.68ms
step:264/1530 train_loss:3.9887 train_time:41577ms step_avg:163.69ms
step:265/1530 train_loss:3.8740 train_time:41744ms step_avg:163.70ms
step:266/1530 train_loss:3.9251 train_time:41911ms step_avg:163.72ms
step:267/1530 train_loss:3.9380 train_time:42077ms step_avg:163.72ms
step:268/1530 train_loss:3.9666 train_time:42243ms step_avg:163.73ms
step:269/1530 train_loss:3.8643 train_time:42408ms step_avg:163.74ms
step:270/1530 train_loss:4.1111 train_time:42574ms step_avg:163.75ms
step:271/1530 train_loss:3.9763 train_time:42741ms step_avg:163.76ms
step:272/1530 train_loss:3.9327 train_time:42906ms step_avg:163.76ms
step:273/1530 train_loss:3.9457 train_time:43072ms step_avg:163.77ms
step:274/1530 train_loss:4.0457 train_time:43238ms step_avg:163.78ms
step:275/1530 train_loss:4.0701 train_time:43405ms step_avg:163.79ms
step:276/1530 train_loss:4.2540 train_time:43571ms step_avg:163.80ms
step:277/1530 train_loss:4.0528 train_time:43737ms step_avg:163.81ms
step:278/1530 train_loss:4.1027 train_time:43904ms step_avg:163.82ms
step:279/1530 train_loss:4.0105 train_time:44071ms step_avg:163.83ms
step:280/1530 train_loss:4.2262 train_time:44237ms step_avg:163.84ms
step:281/1530 train_loss:3.9875 train_time:44405ms step_avg:163.86ms
step:282/1530 train_loss:3.9599 train_time:44573ms step_avg:163.87ms
step:283/1530 train_loss:3.9257 train_time:44739ms step_avg:163.88ms
step:284/1530 train_loss:4.0588 train_time:44906ms step_avg:163.89ms
step:285/1530 train_loss:4.0697 train_time:45072ms step_avg:163.90ms
step:286/1530 train_loss:4.1058 train_time:45237ms step_avg:163.90ms
step:287/1530 train_loss:3.9178 train_time:45402ms step_avg:163.91ms
step:288/1530 train_loss:4.0145 train_time:45567ms step_avg:163.91ms
step:289/1530 train_loss:3.8722 train_time:45731ms step_avg:163.91ms
step:290/1530 train_loss:3.8719 train_time:45897ms step_avg:163.92ms
step:291/1530 train_loss:3.9145 train_time:46062ms step_avg:163.92ms
step:292/1530 train_loss:3.8681 train_time:46227ms step_avg:163.92ms
step:293/1530 train_loss:3.9120 train_time:46392ms step_avg:163.93ms
step:294/1530 train_loss:3.9445 train_time:46556ms step_avg:163.93ms
step:295/1530 train_loss:3.8466 train_time:46721ms step_avg:163.93ms
step:296/1530 train_loss:3.8629 train_time:46887ms step_avg:163.94ms
step:297/1530 train_loss:3.8711 train_time:47051ms step_avg:163.94ms
step:298/1530 train_loss:3.9801 train_time:47217ms step_avg:163.95ms
step:299/1530 train_loss:3.8290 train_time:47382ms step_avg:163.95ms
step:300/1530 train_loss:3.9801 train_time:47547ms step_avg:163.95ms
step:301/1530 train_loss:3.9669 train_time:47713ms step_avg:163.96ms
step:302/1530 train_loss:3.9366 train_time:47878ms step_avg:163.96ms
step:303/1530 train_loss:3.9900 train_time:48043ms step_avg:163.97ms
step:304/1530 train_loss:3.9765 train_time:48209ms step_avg:163.98ms
step:305/1530 train_loss:4.4660 train_time:48374ms step_avg:163.98ms
step:306/1530 train_loss:3.9407 train_time:48539ms step_avg:163.98ms
step:307/1530 train_loss:3.8455 train_time:48704ms step_avg:163.99ms
step:308/1530 train_loss:3.9878 train_time:48870ms step_avg:163.99ms
step:309/1530 train_loss:3.8892 train_time:49035ms step_avg:164.00ms
step:310/1530 train_loss:4.0922 train_time:49200ms step_avg:164.00ms
step:311/1530 train_loss:3.9304 train_time:49366ms step_avg:164.01ms
step:312/1530 train_loss:3.8771 train_time:49533ms step_avg:164.02ms
step:313/1530 train_loss:3.9349 train_time:49698ms step_avg:164.02ms
step:314/1530 train_loss:4.0727 train_time:49863ms step_avg:164.02ms
step:315/1530 train_loss:3.9551 train_time:50028ms step_avg:164.03ms
step:316/1530 train_loss:3.8010 train_time:50193ms step_avg:164.03ms
step:317/1530 train_loss:3.8821 train_time:50358ms step_avg:164.03ms
step:318/1530 train_loss:3.9279 train_time:50524ms step_avg:164.04ms
step:319/1530 train_loss:3.9009 train_time:50690ms step_avg:164.04ms
step:320/1530 train_loss:4.0151 train_time:50854ms step_avg:164.05ms
step:321/1530 train_loss:3.9617 train_time:51019ms step_avg:164.05ms
step:322/1530 train_loss:3.9366 train_time:51186ms step_avg:164.06ms
step:323/1530 train_loss:4.0134 train_time:51351ms step_avg:164.06ms
step:324/1530 train_loss:3.9536 train_time:51517ms step_avg:164.07ms
step:325/1530 train_loss:4.0180 train_time:51682ms step_avg:164.07ms
step:326/1530 train_loss:3.8983 train_time:51848ms step_avg:164.08ms
step:327/1530 train_loss:4.4119 train_time:52013ms step_avg:164.08ms
step:328/1530 train_loss:4.0776 train_time:52178ms step_avg:164.08ms
step:329/1530 train_loss:3.8024 train_time:52345ms step_avg:164.09ms
step:330/1530 train_loss:3.7627 train_time:52511ms step_avg:164.10ms
step:331/1530 train_loss:3.9876 train_time:52676ms step_avg:164.10ms
step:332/1530 train_loss:3.9153 train_time:52840ms step_avg:164.10ms
step:333/1530 train_loss:3.8930 train_time:53007ms step_avg:164.11ms
step:334/1530 train_loss:3.8448 train_time:53173ms step_avg:164.11ms
step:335/1530 train_loss:4.0191 train_time:53337ms step_avg:164.11ms
step:336/1530 train_loss:3.9627 train_time:53503ms step_avg:164.12ms
step:337/1530 train_loss:4.4472 train_time:53670ms step_avg:164.13ms
step:338/1530 train_loss:3.9516 train_time:53835ms step_avg:164.13ms
step:339/1530 train_loss:3.8784 train_time:54001ms step_avg:164.14ms
step:340/1530 train_loss:3.9424 train_time:54165ms step_avg:164.14ms
step:341/1530 train_loss:3.8654 train_time:54331ms step_avg:164.14ms
step:342/1530 train_loss:3.8172 train_time:54498ms step_avg:164.15ms
step:343/1530 train_loss:3.8435 train_time:54666ms step_avg:164.16ms
step:344/1530 train_loss:4.0009 train_time:54835ms step_avg:164.18ms
step:345/1530 train_loss:3.8230 train_time:55004ms step_avg:164.19ms
step:346/1530 train_loss:3.7729 train_time:55173ms step_avg:164.21ms
step:347/1530 train_loss:3.8038 train_time:55341ms step_avg:164.22ms
step:348/1530 train_loss:3.8640 train_time:55510ms step_avg:164.23ms
step:349/1530 train_loss:3.8314 train_time:55677ms step_avg:164.24ms
step:350/1530 train_loss:3.5771 train_time:55845ms step_avg:164.25ms
step:351/1530 train_loss:3.8353 train_time:56014ms step_avg:164.26ms
step:352/1530 train_loss:4.1906 train_time:56181ms step_avg:164.27ms
step:353/1530 train_loss:3.6748 train_time:56350ms step_avg:164.28ms
step:354/1530 train_loss:3.9337 train_time:56518ms step_avg:164.30ms
step:355/1530 train_loss:3.7956 train_time:56686ms step_avg:164.31ms
step:356/1530 train_loss:3.8929 train_time:56853ms step_avg:164.32ms
step:357/1530 train_loss:3.7672 train_time:57021ms step_avg:164.33ms
step:358/1530 train_loss:3.8700 train_time:57189ms step_avg:164.34ms
step:359/1530 train_loss:3.8118 train_time:57358ms step_avg:164.35ms
step:360/1530 train_loss:3.4485 train_time:57527ms step_avg:164.36ms
step:361/1530 train_loss:4.0342 train_time:57696ms step_avg:164.38ms
step:362/1530 train_loss:3.9278 train_time:57864ms step_avg:164.39ms
step:363/1530 train_loss:3.8510 train_time:58031ms step_avg:164.39ms
step:364/1530 train_loss:3.7556 train_time:58199ms step_avg:164.41ms
step:365/1530 train_loss:3.9218 train_time:58367ms step_avg:164.41ms
step:366/1530 train_loss:3.8638 train_time:58535ms step_avg:164.42ms
step:367/1530 train_loss:3.8621 train_time:58702ms step_avg:164.43ms
step:368/1530 train_loss:3.8545 train_time:58869ms step_avg:164.44ms
step:369/1530 train_loss:3.7535 train_time:59037ms step_avg:164.45ms
step:370/1530 train_loss:3.8840 train_time:59205ms step_avg:164.46ms
step:371/1530 train_loss:3.7404 train_time:59373ms step_avg:164.47ms
step:372/1530 train_loss:3.7049 train_time:59541ms step_avg:164.48ms
step:373/1530 train_loss:3.9227 train_time:59710ms step_avg:164.49ms
step:374/1530 train_loss:3.8341 train_time:59876ms step_avg:164.50ms
step:375/1530 train_loss:3.8091 train_time:60044ms step_avg:164.50ms
step:375/1530 val_loss:3.8310 train_time:60093ms step_avg:164.64ms