forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2f4ce5fe-b625-41b4-acbb-d4c20b591ead.txt
2165 lines (2092 loc) · 134 KB
/
2f4ce5fe-b625-41b4-acbb-d4c20b591ead.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 03:28:49 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 2% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31732ms step_avg:nanms
step:2/1530 train_loss:10.0857 train_time:31843ms step_avg:nanms
step:3/1530 train_loss:8.4306 train_time:32002ms step_avg:nanms
step:4/1530 train_loss:7.5140 train_time:32163ms step_avg:nanms
step:5/1530 train_loss:7.4447 train_time:32323ms step_avg:nanms
step:6/1530 train_loss:6.9495 train_time:32484ms step_avg:nanms
step:7/1530 train_loss:7.1900 train_time:32647ms step_avg:nanms
step:8/1530 train_loss:6.7165 train_time:32807ms step_avg:nanms
step:9/1530 train_loss:6.6077 train_time:32968ms step_avg:nanms
step:10/1530 train_loss:6.5017 train_time:33128ms step_avg:nanms
step:11/1530 train_loss:6.4453 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3194 train_time:276ms step_avg:nanms
step:13/1530 train_loss:6.2589 train_time:436ms step_avg:145.27ms
step:14/1530 train_loss:6.2066 train_time:597ms step_avg:149.14ms
step:15/1530 train_loss:6.1715 train_time:757ms step_avg:151.42ms
step:16/1530 train_loss:6.1008 train_time:917ms step_avg:152.80ms
step:17/1530 train_loss:6.1577 train_time:1078ms step_avg:154.04ms
step:18/1530 train_loss:5.9402 train_time:1238ms step_avg:154.80ms
step:19/1530 train_loss:5.9906 train_time:1398ms step_avg:155.38ms
step:20/1530 train_loss:5.6765 train_time:1561ms step_avg:156.10ms
step:21/1530 train_loss:5.9452 train_time:1722ms step_avg:156.53ms
step:22/1530 train_loss:6.1848 train_time:1881ms step_avg:156.78ms
step:23/1530 train_loss:5.8730 train_time:2042ms step_avg:157.11ms
step:24/1530 train_loss:6.0210 train_time:2203ms step_avg:157.35ms
step:25/1530 train_loss:5.6963 train_time:2364ms step_avg:157.62ms
step:26/1530 train_loss:5.5951 train_time:2525ms step_avg:157.82ms
step:27/1530 train_loss:5.7896 train_time:2685ms step_avg:157.91ms
step:28/1530 train_loss:5.4035 train_time:2845ms step_avg:158.03ms
step:29/1530 train_loss:5.6860 train_time:3004ms step_avg:158.12ms
step:30/1530 train_loss:5.4573 train_time:3165ms step_avg:158.23ms
step:31/1530 train_loss:5.4249 train_time:3325ms step_avg:158.31ms
step:32/1530 train_loss:5.2801 train_time:3484ms step_avg:158.37ms
step:33/1530 train_loss:5.5831 train_time:3644ms step_avg:158.45ms
step:34/1530 train_loss:5.4986 train_time:3804ms step_avg:158.49ms
step:35/1530 train_loss:5.6173 train_time:3964ms step_avg:158.56ms
step:36/1530 train_loss:5.5345 train_time:4123ms step_avg:158.58ms
step:37/1530 train_loss:5.4338 train_time:4284ms step_avg:158.66ms
step:38/1530 train_loss:5.3056 train_time:4444ms step_avg:158.73ms
step:39/1530 train_loss:5.3417 train_time:4604ms step_avg:158.78ms
step:40/1530 train_loss:5.2435 train_time:4765ms step_avg:158.83ms
step:41/1530 train_loss:5.2252 train_time:4925ms step_avg:158.88ms
step:42/1530 train_loss:5.1652 train_time:5085ms step_avg:158.90ms
step:43/1530 train_loss:5.2755 train_time:5244ms step_avg:158.92ms
step:44/1530 train_loss:5.2241 train_time:5405ms step_avg:158.97ms
step:45/1530 train_loss:5.3733 train_time:5565ms step_avg:159.01ms
step:46/1530 train_loss:5.1627 train_time:5726ms step_avg:159.05ms
step:47/1530 train_loss:5.0494 train_time:5886ms step_avg:159.08ms
step:48/1530 train_loss:5.1998 train_time:6047ms step_avg:159.12ms
step:49/1530 train_loss:5.1515 train_time:6207ms step_avg:159.14ms
step:50/1530 train_loss:5.2593 train_time:6366ms step_avg:159.14ms
step:51/1530 train_loss:5.1617 train_time:6527ms step_avg:159.18ms
step:52/1530 train_loss:5.0339 train_time:6687ms step_avg:159.22ms
step:53/1530 train_loss:5.1812 train_time:6848ms step_avg:159.27ms
step:54/1530 train_loss:5.0017 train_time:7010ms step_avg:159.32ms
step:55/1530 train_loss:5.4051 train_time:7171ms step_avg:159.35ms
step:56/1530 train_loss:5.0154 train_time:7332ms step_avg:159.39ms
step:57/1530 train_loss:4.8797 train_time:7492ms step_avg:159.41ms
step:58/1530 train_loss:5.0444 train_time:7653ms step_avg:159.43ms
step:59/1530 train_loss:5.0300 train_time:7812ms step_avg:159.44ms
step:60/1530 train_loss:5.1391 train_time:7974ms step_avg:159.47ms
step:61/1530 train_loss:4.8668 train_time:8135ms step_avg:159.51ms
step:62/1530 train_loss:4.9930 train_time:8295ms step_avg:159.52ms
step:63/1530 train_loss:4.9782 train_time:8456ms step_avg:159.54ms
step:64/1530 train_loss:4.9224 train_time:8615ms step_avg:159.53ms
step:65/1530 train_loss:4.8295 train_time:8776ms step_avg:159.56ms
step:66/1530 train_loss:4.9417 train_time:8936ms step_avg:159.58ms
step:67/1530 train_loss:4.8185 train_time:9096ms step_avg:159.58ms
step:68/1530 train_loss:5.0896 train_time:9258ms step_avg:159.62ms
step:69/1530 train_loss:4.7308 train_time:9418ms step_avg:159.63ms
step:70/1530 train_loss:4.8357 train_time:9579ms step_avg:159.65ms
step:71/1530 train_loss:4.9852 train_time:9740ms step_avg:159.68ms
step:72/1530 train_loss:4.8886 train_time:9901ms step_avg:159.69ms
step:73/1530 train_loss:4.7632 train_time:10062ms step_avg:159.72ms
step:74/1530 train_loss:4.9134 train_time:10222ms step_avg:159.72ms
step:75/1530 train_loss:4.8925 train_time:10382ms step_avg:159.72ms
step:76/1530 train_loss:4.8116 train_time:10542ms step_avg:159.73ms
step:77/1530 train_loss:4.9227 train_time:10702ms step_avg:159.73ms
step:78/1530 train_loss:5.1191 train_time:10864ms step_avg:159.76ms
step:79/1530 train_loss:4.8330 train_time:11023ms step_avg:159.76ms
step:80/1530 train_loss:4.8947 train_time:11183ms step_avg:159.76ms
step:81/1530 train_loss:4.6782 train_time:11343ms step_avg:159.77ms
step:82/1530 train_loss:4.8344 train_time:11504ms step_avg:159.77ms
step:83/1530 train_loss:4.7922 train_time:11664ms step_avg:159.78ms
step:84/1530 train_loss:4.7846 train_time:11824ms step_avg:159.78ms
step:85/1530 train_loss:4.6279 train_time:11984ms step_avg:159.78ms
step:86/1530 train_loss:4.8457 train_time:12144ms step_avg:159.78ms
step:87/1530 train_loss:4.7573 train_time:12305ms step_avg:159.80ms
step:88/1530 train_loss:4.7606 train_time:12465ms step_avg:159.81ms
step:89/1530 train_loss:4.7140 train_time:12625ms step_avg:159.81ms
step:90/1530 train_loss:4.6576 train_time:12784ms step_avg:159.81ms
step:91/1530 train_loss:4.6539 train_time:12944ms step_avg:159.80ms
step:92/1530 train_loss:4.8206 train_time:13104ms step_avg:159.81ms
step:93/1530 train_loss:4.6359 train_time:13266ms step_avg:159.83ms
step:94/1530 train_loss:4.6554 train_time:13426ms step_avg:159.84ms
step:95/1530 train_loss:4.6905 train_time:13586ms step_avg:159.83ms
step:96/1530 train_loss:4.6099 train_time:13746ms step_avg:159.84ms
step:97/1530 train_loss:4.6652 train_time:13907ms step_avg:159.86ms
step:98/1530 train_loss:4.5984 train_time:14068ms step_avg:159.86ms
step:99/1530 train_loss:4.6771 train_time:14228ms step_avg:159.87ms
step:100/1530 train_loss:4.6870 train_time:14389ms step_avg:159.88ms
step:101/1530 train_loss:4.5404 train_time:14548ms step_avg:159.87ms
step:102/1530 train_loss:4.7115 train_time:14709ms step_avg:159.88ms
step:103/1530 train_loss:4.5906 train_time:14871ms step_avg:159.90ms
step:104/1530 train_loss:4.5479 train_time:15031ms step_avg:159.91ms
step:105/1530 train_loss:4.5643 train_time:15192ms step_avg:159.91ms
step:106/1530 train_loss:4.6527 train_time:15352ms step_avg:159.92ms
step:107/1530 train_loss:4.5246 train_time:15512ms step_avg:159.92ms
step:108/1530 train_loss:4.3911 train_time:15674ms step_avg:159.94ms
step:109/1530 train_loss:4.5087 train_time:15835ms step_avg:159.95ms
step:110/1530 train_loss:4.5077 train_time:15996ms step_avg:159.96ms
step:111/1530 train_loss:4.4385 train_time:16157ms step_avg:159.97ms
step:112/1530 train_loss:4.5981 train_time:16318ms step_avg:159.98ms
step:113/1530 train_loss:4.4977 train_time:16479ms step_avg:159.99ms
step:114/1530 train_loss:4.3822 train_time:16640ms step_avg:160.00ms
step:115/1530 train_loss:4.5281 train_time:16802ms step_avg:160.02ms
step:116/1530 train_loss:4.4790 train_time:16969ms step_avg:160.09ms
step:117/1530 train_loss:4.3798 train_time:17134ms step_avg:160.13ms
step:118/1530 train_loss:4.5966 train_time:17298ms step_avg:160.16ms
step:119/1530 train_loss:4.4669 train_time:17461ms step_avg:160.20ms
step:120/1530 train_loss:4.3411 train_time:17625ms step_avg:160.23ms
step:121/1530 train_loss:4.3130 train_time:17790ms step_avg:160.27ms
step:122/1530 train_loss:4.4622 train_time:17954ms step_avg:160.30ms
step:123/1530 train_loss:4.2933 train_time:18117ms step_avg:160.33ms
step:124/1530 train_loss:4.5994 train_time:18282ms step_avg:160.37ms
step:125/1530 train_loss:4.4850 train_time:18446ms step_avg:160.40ms
step:125/1530 val_loss:4.4175 train_time:18493ms step_avg:160.81ms
step:126/1530 train_loss:4.4307 train_time:18614ms step_avg:160.47ms
step:127/1530 train_loss:4.4510 train_time:18778ms step_avg:160.50ms
step:128/1530 train_loss:4.3898 train_time:18942ms step_avg:160.53ms
step:129/1530 train_loss:4.7017 train_time:19108ms step_avg:160.57ms
step:130/1530 train_loss:4.3675 train_time:19270ms step_avg:160.58ms
step:131/1530 train_loss:4.4056 train_time:19435ms step_avg:160.62ms
step:132/1530 train_loss:4.3624 train_time:19599ms step_avg:160.65ms
step:133/1530 train_loss:4.4639 train_time:19762ms step_avg:160.67ms
step:134/1530 train_loss:4.2860 train_time:19927ms step_avg:160.70ms
step:135/1530 train_loss:4.4508 train_time:20090ms step_avg:160.72ms
step:136/1530 train_loss:4.2273 train_time:20254ms step_avg:160.75ms
step:137/1530 train_loss:4.3797 train_time:20417ms step_avg:160.77ms
step:138/1530 train_loss:4.2982 train_time:20581ms step_avg:160.79ms
step:139/1530 train_loss:4.3875 train_time:20745ms step_avg:160.81ms
step:140/1530 train_loss:4.4773 train_time:20909ms step_avg:160.84ms
step:141/1530 train_loss:4.3163 train_time:21073ms step_avg:160.86ms
step:142/1530 train_loss:4.3075 train_time:21237ms step_avg:160.89ms
step:143/1530 train_loss:4.2587 train_time:21401ms step_avg:160.91ms
step:144/1530 train_loss:4.3504 train_time:21564ms step_avg:160.93ms
step:145/1530 train_loss:4.3138 train_time:21729ms step_avg:160.96ms
step:146/1530 train_loss:4.1843 train_time:21894ms step_avg:160.98ms
step:147/1530 train_loss:4.3246 train_time:22058ms step_avg:161.01ms
step:148/1530 train_loss:4.3581 train_time:22221ms step_avg:161.02ms
step:149/1530 train_loss:4.3130 train_time:22385ms step_avg:161.05ms
step:150/1530 train_loss:4.4442 train_time:22549ms step_avg:161.06ms
step:151/1530 train_loss:4.2681 train_time:22714ms step_avg:161.09ms
step:152/1530 train_loss:4.2819 train_time:22877ms step_avg:161.10ms
step:153/1530 train_loss:4.3761 train_time:23041ms step_avg:161.12ms
step:154/1530 train_loss:4.3742 train_time:23205ms step_avg:161.15ms
step:155/1530 train_loss:4.2656 train_time:23369ms step_avg:161.17ms
step:156/1530 train_loss:4.3458 train_time:23532ms step_avg:161.18ms
step:157/1530 train_loss:4.4022 train_time:23697ms step_avg:161.20ms
step:158/1530 train_loss:4.2504 train_time:23860ms step_avg:161.22ms
step:159/1530 train_loss:4.3188 train_time:24023ms step_avg:161.23ms
step:160/1530 train_loss:4.1359 train_time:24187ms step_avg:161.25ms
step:161/1530 train_loss:4.3475 train_time:24350ms step_avg:161.26ms
step:162/1530 train_loss:4.3556 train_time:24514ms step_avg:161.28ms
step:163/1530 train_loss:4.3367 train_time:24678ms step_avg:161.29ms
step:164/1530 train_loss:4.1831 train_time:24841ms step_avg:161.31ms
step:165/1530 train_loss:4.2789 train_time:25005ms step_avg:161.32ms
step:166/1530 train_loss:4.3430 train_time:25169ms step_avg:161.34ms
step:167/1530 train_loss:4.2020 train_time:25333ms step_avg:161.36ms
step:168/1530 train_loss:4.2883 train_time:25497ms step_avg:161.37ms
step:169/1530 train_loss:4.1660 train_time:25660ms step_avg:161.39ms
step:170/1530 train_loss:4.0257 train_time:25825ms step_avg:161.41ms
step:171/1530 train_loss:4.2016 train_time:25989ms step_avg:161.42ms
step:172/1530 train_loss:4.2023 train_time:26151ms step_avg:161.42ms
step:173/1530 train_loss:4.2762 train_time:26314ms step_avg:161.44ms
step:174/1530 train_loss:4.4183 train_time:26476ms step_avg:161.44ms
step:175/1530 train_loss:4.2410 train_time:26639ms step_avg:161.45ms
step:176/1530 train_loss:4.0958 train_time:26802ms step_avg:161.46ms
step:177/1530 train_loss:4.0707 train_time:26964ms step_avg:161.46ms
step:178/1530 train_loss:4.1881 train_time:27127ms step_avg:161.47ms
step:179/1530 train_loss:4.1225 train_time:27289ms step_avg:161.47ms
step:180/1530 train_loss:4.1211 train_time:27451ms step_avg:161.47ms
step:181/1530 train_loss:4.2948 train_time:27614ms step_avg:161.48ms
step:182/1530 train_loss:4.1510 train_time:27776ms step_avg:161.49ms
step:183/1530 train_loss:4.1323 train_time:27939ms step_avg:161.50ms
step:184/1530 train_loss:4.1335 train_time:28101ms step_avg:161.50ms
step:185/1530 train_loss:4.2213 train_time:28265ms step_avg:161.51ms
step:186/1530 train_loss:4.1795 train_time:28427ms step_avg:161.52ms
step:187/1530 train_loss:4.2213 train_time:28591ms step_avg:161.53ms
step:188/1530 train_loss:4.1717 train_time:28894ms step_avg:162.32ms
step:189/1530 train_loss:4.1117 train_time:29230ms step_avg:163.30ms
step:190/1530 train_loss:4.2037 train_time:29394ms step_avg:163.30ms
step:191/1530 train_loss:4.0748 train_time:29557ms step_avg:163.30ms
step:192/1530 train_loss:4.0195 train_time:29720ms step_avg:163.30ms
step:193/1530 train_loss:4.2544 train_time:29882ms step_avg:163.29ms
step:194/1530 train_loss:4.1712 train_time:30045ms step_avg:163.29ms
step:195/1530 train_loss:4.3561 train_time:30208ms step_avg:163.29ms
step:196/1530 train_loss:4.1756 train_time:30371ms step_avg:163.29ms
step:197/1530 train_loss:4.0426 train_time:30534ms step_avg:163.29ms
step:198/1530 train_loss:4.1690 train_time:30697ms step_avg:163.28ms
step:199/1530 train_loss:4.0306 train_time:30860ms step_avg:163.28ms
step:200/1530 train_loss:4.1133 train_time:31023ms step_avg:163.28ms
step:201/1530 train_loss:4.0164 train_time:31186ms step_avg:163.28ms
step:202/1530 train_loss:4.2523 train_time:31350ms step_avg:163.28ms
step:203/1530 train_loss:4.0653 train_time:31512ms step_avg:163.28ms
step:204/1530 train_loss:4.1868 train_time:31675ms step_avg:163.27ms
step:205/1530 train_loss:4.2420 train_time:31838ms step_avg:163.27ms
step:206/1530 train_loss:3.9414 train_time:32001ms step_avg:163.27ms
step:207/1530 train_loss:4.0719 train_time:32164ms step_avg:163.27ms
step:208/1530 train_loss:4.1042 train_time:32327ms step_avg:163.27ms
step:209/1530 train_loss:4.2340 train_time:32489ms step_avg:163.26ms
step:210/1530 train_loss:4.1733 train_time:32652ms step_avg:163.26ms
step:211/1530 train_loss:4.0629 train_time:32815ms step_avg:163.26ms
step:212/1530 train_loss:4.1179 train_time:32977ms step_avg:163.25ms
step:213/1530 train_loss:4.0507 train_time:33140ms step_avg:163.25ms
step:214/1530 train_loss:4.1204 train_time:33303ms step_avg:163.25ms
step:215/1530 train_loss:3.9554 train_time:33468ms step_avg:163.26ms
step:216/1530 train_loss:3.9876 train_time:33631ms step_avg:163.26ms
step:217/1530 train_loss:4.0023 train_time:33794ms step_avg:163.26ms
step:218/1530 train_loss:4.0802 train_time:33958ms step_avg:163.26ms
step:219/1530 train_loss:4.0724 train_time:34120ms step_avg:163.26ms
step:220/1530 train_loss:4.0785 train_time:34283ms step_avg:163.25ms
step:221/1530 train_loss:4.0944 train_time:34446ms step_avg:163.25ms
step:222/1530 train_loss:3.9912 train_time:34610ms step_avg:163.26ms
step:223/1530 train_loss:3.9887 train_time:34774ms step_avg:163.26ms
step:224/1530 train_loss:4.2983 train_time:34937ms step_avg:163.26ms
step:225/1530 train_loss:3.9228 train_time:35100ms step_avg:163.26ms
step:226/1530 train_loss:3.9835 train_time:35264ms step_avg:163.26ms
step:227/1530 train_loss:3.9704 train_time:35426ms step_avg:163.25ms
step:228/1530 train_loss:4.1371 train_time:35591ms step_avg:163.26ms
step:229/1530 train_loss:3.9210 train_time:35758ms step_avg:163.28ms
step:230/1530 train_loss:4.0365 train_time:35922ms step_avg:163.28ms
step:231/1530 train_loss:3.9001 train_time:36089ms step_avg:163.30ms
step:232/1530 train_loss:3.9634 train_time:36255ms step_avg:163.31ms
step:233/1530 train_loss:4.0855 train_time:36420ms step_avg:163.32ms
step:234/1530 train_loss:4.0271 train_time:36587ms step_avg:163.34ms
step:235/1530 train_loss:3.9077 train_time:36756ms step_avg:163.36ms
step:236/1530 train_loss:4.0700 train_time:36922ms step_avg:163.37ms
step:237/1530 train_loss:4.0733 train_time:37087ms step_avg:163.38ms
step:238/1530 train_loss:3.9419 train_time:37254ms step_avg:163.40ms
step:239/1530 train_loss:4.0773 train_time:37420ms step_avg:163.41ms
step:240/1530 train_loss:4.1134 train_time:37586ms step_avg:163.42ms
step:241/1530 train_loss:3.9596 train_time:37752ms step_avg:163.43ms
step:242/1530 train_loss:4.1438 train_time:37919ms step_avg:163.44ms
step:243/1530 train_loss:4.0082 train_time:38085ms step_avg:163.46ms
step:244/1530 train_loss:4.0764 train_time:38251ms step_avg:163.47ms
step:245/1530 train_loss:4.1313 train_time:38417ms step_avg:163.47ms
step:246/1530 train_loss:4.0489 train_time:38582ms step_avg:163.48ms
step:247/1530 train_loss:4.0027 train_time:38748ms step_avg:163.49ms
step:248/1530 train_loss:4.0933 train_time:38916ms step_avg:163.51ms
step:249/1530 train_loss:3.9170 train_time:39081ms step_avg:163.52ms
step:250/1530 train_loss:3.9659 train_time:39247ms step_avg:163.53ms
step:250/1530 val_loss:4.0004 train_time:39296ms step_avg:163.73ms
step:251/1530 train_loss:4.0662 train_time:39417ms step_avg:163.56ms
step:252/1530 train_loss:4.1508 train_time:39584ms step_avg:163.57ms
step:253/1530 train_loss:3.9219 train_time:39750ms step_avg:163.58ms
step:254/1530 train_loss:3.8709 train_time:39918ms step_avg:163.60ms
step:255/1530 train_loss:4.0727 train_time:40084ms step_avg:163.61ms
step:256/1530 train_loss:3.9889 train_time:40251ms step_avg:163.62ms
step:257/1530 train_loss:3.9868 train_time:40417ms step_avg:163.63ms
step:258/1530 train_loss:3.9774 train_time:40586ms step_avg:163.65ms
step:259/1530 train_loss:4.0288 train_time:40752ms step_avg:163.66ms
step:260/1530 train_loss:4.0537 train_time:40918ms step_avg:163.67ms
step:261/1530 train_loss:4.0153 train_time:41085ms step_avg:163.69ms
step:262/1530 train_loss:3.9789 train_time:41251ms step_avg:163.70ms
step:263/1530 train_loss:3.8832 train_time:41417ms step_avg:163.70ms
step:264/1530 train_loss:3.9814 train_time:41582ms step_avg:163.71ms
step:265/1530 train_loss:3.8641 train_time:41750ms step_avg:163.72ms
step:266/1530 train_loss:3.9148 train_time:41916ms step_avg:163.73ms
step:267/1530 train_loss:3.9229 train_time:42082ms step_avg:163.74ms
step:268/1530 train_loss:3.9523 train_time:42247ms step_avg:163.75ms
step:269/1530 train_loss:3.8447 train_time:42414ms step_avg:163.76ms
step:270/1530 train_loss:4.0836 train_time:42580ms step_avg:163.77ms
step:271/1530 train_loss:3.9603 train_time:42746ms step_avg:163.78ms
step:272/1530 train_loss:3.9280 train_time:42912ms step_avg:163.79ms
step:273/1530 train_loss:3.9378 train_time:43078ms step_avg:163.79ms
step:274/1530 train_loss:4.0311 train_time:43242ms step_avg:163.80ms
step:275/1530 train_loss:4.0574 train_time:43408ms step_avg:163.81ms
step:276/1530 train_loss:4.2242 train_time:43576ms step_avg:163.82ms
step:277/1530 train_loss:4.0342 train_time:43740ms step_avg:163.82ms
step:278/1530 train_loss:4.0785 train_time:43907ms step_avg:163.83ms
step:279/1530 train_loss:3.9940 train_time:44074ms step_avg:163.84ms
step:280/1530 train_loss:4.2392 train_time:44240ms step_avg:163.85ms
step:281/1530 train_loss:3.9778 train_time:44405ms step_avg:163.86ms
step:282/1530 train_loss:3.9344 train_time:44574ms step_avg:163.87ms
step:283/1530 train_loss:3.9131 train_time:44739ms step_avg:163.88ms
step:284/1530 train_loss:4.0421 train_time:44905ms step_avg:163.89ms
step:285/1530 train_loss:4.0532 train_time:45072ms step_avg:163.90ms
step:286/1530 train_loss:4.0853 train_time:45237ms step_avg:163.90ms
step:287/1530 train_loss:3.8991 train_time:45402ms step_avg:163.91ms
step:288/1530 train_loss:4.0027 train_time:45567ms step_avg:163.91ms
step:289/1530 train_loss:3.8635 train_time:45734ms step_avg:163.92ms
step:290/1530 train_loss:3.8577 train_time:45899ms step_avg:163.93ms
step:291/1530 train_loss:3.8996 train_time:46064ms step_avg:163.93ms
step:292/1530 train_loss:3.8579 train_time:46230ms step_avg:163.94ms
step:293/1530 train_loss:3.8979 train_time:46396ms step_avg:163.94ms
step:294/1530 train_loss:3.9318 train_time:46561ms step_avg:163.95ms
step:295/1530 train_loss:3.8334 train_time:46725ms step_avg:163.95ms
step:296/1530 train_loss:3.8546 train_time:46893ms step_avg:163.96ms
step:297/1530 train_loss:3.8587 train_time:47059ms step_avg:163.97ms
step:298/1530 train_loss:3.9648 train_time:47223ms step_avg:163.97ms
step:299/1530 train_loss:3.8194 train_time:47389ms step_avg:163.98ms
step:300/1530 train_loss:3.9599 train_time:47555ms step_avg:163.98ms
step:301/1530 train_loss:3.9558 train_time:47720ms step_avg:163.99ms
step:302/1530 train_loss:3.9257 train_time:47885ms step_avg:163.99ms
step:303/1530 train_loss:3.9741 train_time:48050ms step_avg:163.99ms
step:304/1530 train_loss:3.9615 train_time:48215ms step_avg:164.00ms
step:305/1530 train_loss:4.4536 train_time:48380ms step_avg:164.00ms
step:306/1530 train_loss:3.9280 train_time:48543ms step_avg:164.00ms
step:307/1530 train_loss:3.8288 train_time:48709ms step_avg:164.00ms
step:308/1530 train_loss:3.9795 train_time:48875ms step_avg:164.01ms
step:309/1530 train_loss:3.8645 train_time:49040ms step_avg:164.01ms
step:310/1530 train_loss:4.0848 train_time:49206ms step_avg:164.02ms
step:311/1530 train_loss:3.9261 train_time:49373ms step_avg:164.03ms
step:312/1530 train_loss:3.8564 train_time:49537ms step_avg:164.03ms
step:313/1530 train_loss:3.9258 train_time:49703ms step_avg:164.04ms
step:314/1530 train_loss:4.0470 train_time:49869ms step_avg:164.04ms
step:315/1530 train_loss:3.9357 train_time:50034ms step_avg:164.05ms
step:316/1530 train_loss:3.7881 train_time:50199ms step_avg:164.05ms
step:317/1530 train_loss:3.8713 train_time:50364ms step_avg:164.05ms
step:318/1530 train_loss:3.9154 train_time:50530ms step_avg:164.06ms
step:319/1530 train_loss:3.8859 train_time:50697ms step_avg:164.07ms
step:320/1530 train_loss:4.0093 train_time:50862ms step_avg:164.07ms
step:321/1530 train_loss:3.9542 train_time:51027ms step_avg:164.07ms
step:322/1530 train_loss:3.9294 train_time:51193ms step_avg:164.08ms
step:323/1530 train_loss:4.0020 train_time:51358ms step_avg:164.08ms
step:324/1530 train_loss:3.9309 train_time:51523ms step_avg:164.08ms
step:325/1530 train_loss:4.0102 train_time:51688ms step_avg:164.09ms
step:326/1530 train_loss:3.8861 train_time:51854ms step_avg:164.09ms
step:327/1530 train_loss:4.3842 train_time:52019ms step_avg:164.10ms
step:328/1530 train_loss:4.0729 train_time:52184ms step_avg:164.10ms
step:329/1530 train_loss:3.7874 train_time:52350ms step_avg:164.11ms
step:330/1530 train_loss:3.7352 train_time:52515ms step_avg:164.11ms
step:331/1530 train_loss:3.9742 train_time:52680ms step_avg:164.11ms
step:332/1530 train_loss:3.9081 train_time:52845ms step_avg:164.11ms
step:333/1530 train_loss:3.8799 train_time:53009ms step_avg:164.11ms
step:334/1530 train_loss:3.8319 train_time:53175ms step_avg:164.12ms
step:335/1530 train_loss:4.0060 train_time:53338ms step_avg:164.12ms
step:336/1530 train_loss:3.9573 train_time:53503ms step_avg:164.12ms
step:337/1530 train_loss:4.4151 train_time:53670ms step_avg:164.13ms
step:338/1530 train_loss:3.9212 train_time:53835ms step_avg:164.13ms
step:339/1530 train_loss:3.8595 train_time:54000ms step_avg:164.13ms
step:340/1530 train_loss:3.9354 train_time:54166ms step_avg:164.14ms
step:341/1530 train_loss:3.8513 train_time:54333ms step_avg:164.15ms
step:342/1530 train_loss:3.8088 train_time:54500ms step_avg:164.16ms
step:343/1530 train_loss:3.8314 train_time:54668ms step_avg:164.17ms
step:344/1530 train_loss:3.9884 train_time:54836ms step_avg:164.18ms
step:345/1530 train_loss:3.8072 train_time:55005ms step_avg:164.19ms
step:346/1530 train_loss:3.7563 train_time:55175ms step_avg:164.21ms
step:347/1530 train_loss:3.7858 train_time:55342ms step_avg:164.22ms
step:348/1530 train_loss:3.8514 train_time:55510ms step_avg:164.23ms
step:349/1530 train_loss:3.8262 train_time:55678ms step_avg:164.24ms
step:350/1530 train_loss:3.5667 train_time:55846ms step_avg:164.25ms
step:351/1530 train_loss:3.8214 train_time:56015ms step_avg:164.27ms
step:352/1530 train_loss:4.1724 train_time:56183ms step_avg:164.28ms
step:353/1530 train_loss:3.6538 train_time:56352ms step_avg:164.29ms
step:354/1530 train_loss:3.9152 train_time:56519ms step_avg:164.30ms
step:355/1530 train_loss:3.7737 train_time:56688ms step_avg:164.31ms
step:356/1530 train_loss:3.8766 train_time:56856ms step_avg:164.32ms
step:357/1530 train_loss:3.7398 train_time:57024ms step_avg:164.33ms
step:358/1530 train_loss:3.8649 train_time:57193ms step_avg:164.35ms
step:359/1530 train_loss:3.7869 train_time:57361ms step_avg:164.36ms
step:360/1530 train_loss:3.4221 train_time:57531ms step_avg:164.37ms
step:361/1530 train_loss:4.0139 train_time:57700ms step_avg:164.39ms
step:362/1530 train_loss:3.9073 train_time:57869ms step_avg:164.40ms
step:363/1530 train_loss:3.8370 train_time:58036ms step_avg:164.41ms
step:364/1530 train_loss:3.7316 train_time:58204ms step_avg:164.42ms
step:365/1530 train_loss:3.9131 train_time:58373ms step_avg:164.43ms
step:366/1530 train_loss:3.8523 train_time:58540ms step_avg:164.44ms
step:367/1530 train_loss:3.8537 train_time:58708ms step_avg:164.45ms
step:368/1530 train_loss:3.8412 train_time:58877ms step_avg:164.46ms
step:369/1530 train_loss:3.7325 train_time:59043ms step_avg:164.46ms
step:370/1530 train_loss:3.8669 train_time:59211ms step_avg:164.48ms
step:371/1530 train_loss:3.7265 train_time:59379ms step_avg:164.49ms
step:372/1530 train_loss:3.6918 train_time:59548ms step_avg:164.50ms
step:373/1530 train_loss:3.9113 train_time:59716ms step_avg:164.51ms
step:374/1530 train_loss:3.8245 train_time:59883ms step_avg:164.52ms
step:375/1530 train_loss:3.7998 train_time:60051ms step_avg:164.52ms
step:375/1530 val_loss:3.8238 train_time:60099ms step_avg:164.65ms