forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path51b3baf0-69d6-43ee-a88b-2c5c28e3dd5b.txt
2165 lines (2092 loc) · 134 KB
/
51b3baf0-69d6-43ee-a88b-2c5c28e3dd5b.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 04:50:39 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 39C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 31C P0 99W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 85W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 119W / 700W | 43MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 30C P0 109W / 700W | 39MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 39C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 119W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:32007ms step_avg:nanms
step:2/1530 train_loss:10.0699 train_time:32118ms step_avg:nanms
step:3/1530 train_loss:8.3585 train_time:32278ms step_avg:nanms
step:4/1530 train_loss:7.6048 train_time:32440ms step_avg:nanms
step:5/1530 train_loss:7.4530 train_time:32601ms step_avg:nanms
step:6/1530 train_loss:6.9770 train_time:32762ms step_avg:nanms
step:7/1530 train_loss:7.1810 train_time:32922ms step_avg:nanms
step:8/1530 train_loss:6.7403 train_time:33083ms step_avg:nanms
step:9/1530 train_loss:6.6333 train_time:33244ms step_avg:nanms
step:10/1530 train_loss:6.5202 train_time:33405ms step_avg:nanms
step:11/1530 train_loss:6.5162 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3397 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2449 train_time:435ms step_avg:145.03ms
step:14/1530 train_loss:6.1789 train_time:596ms step_avg:148.92ms
step:15/1530 train_loss:6.1748 train_time:756ms step_avg:151.13ms
step:16/1530 train_loss:6.0944 train_time:916ms step_avg:152.64ms
step:17/1530 train_loss:6.1580 train_time:1077ms step_avg:153.82ms
step:18/1530 train_loss:5.9519 train_time:1236ms step_avg:154.52ms
step:19/1530 train_loss:6.0066 train_time:1397ms step_avg:155.20ms
step:20/1530 train_loss:5.6697 train_time:1557ms step_avg:155.72ms
step:21/1530 train_loss:5.9755 train_time:1717ms step_avg:156.13ms
step:22/1530 train_loss:6.1991 train_time:1879ms step_avg:156.55ms
step:23/1530 train_loss:5.8444 train_time:2039ms step_avg:156.87ms
step:24/1530 train_loss:6.0191 train_time:2200ms step_avg:157.12ms
step:25/1530 train_loss:5.7055 train_time:2359ms step_avg:157.28ms
step:26/1530 train_loss:5.6038 train_time:2520ms step_avg:157.50ms
step:27/1530 train_loss:5.7844 train_time:2681ms step_avg:157.71ms
step:28/1530 train_loss:5.4030 train_time:2841ms step_avg:157.82ms
step:29/1530 train_loss:5.6830 train_time:3002ms step_avg:157.98ms
step:30/1530 train_loss:5.4696 train_time:3162ms step_avg:158.10ms
step:31/1530 train_loss:5.4413 train_time:3324ms step_avg:158.27ms
step:32/1530 train_loss:5.2839 train_time:3483ms step_avg:158.33ms
step:33/1530 train_loss:5.5819 train_time:3644ms step_avg:158.44ms
step:34/1530 train_loss:5.4937 train_time:3804ms step_avg:158.52ms
step:35/1530 train_loss:5.6433 train_time:3964ms step_avg:158.56ms
step:36/1530 train_loss:5.5649 train_time:4125ms step_avg:158.67ms
step:37/1530 train_loss:5.4634 train_time:4287ms step_avg:158.76ms
step:38/1530 train_loss:5.3056 train_time:4448ms step_avg:158.86ms
step:39/1530 train_loss:5.3271 train_time:4609ms step_avg:158.93ms
step:40/1530 train_loss:5.2365 train_time:4770ms step_avg:159.01ms
step:41/1530 train_loss:5.2206 train_time:4931ms step_avg:159.05ms
step:42/1530 train_loss:5.1593 train_time:5091ms step_avg:159.11ms
step:43/1530 train_loss:5.2675 train_time:5252ms step_avg:159.16ms
step:44/1530 train_loss:5.2282 train_time:5413ms step_avg:159.20ms
step:45/1530 train_loss:5.3880 train_time:5574ms step_avg:159.26ms
step:46/1530 train_loss:5.1766 train_time:5733ms step_avg:159.24ms
step:47/1530 train_loss:5.0679 train_time:5894ms step_avg:159.30ms
step:48/1530 train_loss:5.2081 train_time:6055ms step_avg:159.34ms
step:49/1530 train_loss:5.1519 train_time:6215ms step_avg:159.37ms
step:50/1530 train_loss:5.2506 train_time:6376ms step_avg:159.41ms
step:51/1530 train_loss:5.1388 train_time:6536ms step_avg:159.41ms
step:52/1530 train_loss:5.0217 train_time:6696ms step_avg:159.43ms
step:53/1530 train_loss:5.1656 train_time:6857ms step_avg:159.46ms
step:54/1530 train_loss:5.0105 train_time:7017ms step_avg:159.48ms
step:55/1530 train_loss:5.4168 train_time:7177ms step_avg:159.48ms
step:56/1530 train_loss:5.0089 train_time:7338ms step_avg:159.52ms
step:57/1530 train_loss:4.8833 train_time:7498ms step_avg:159.53ms
step:58/1530 train_loss:5.0423 train_time:7659ms step_avg:159.56ms
step:59/1530 train_loss:5.0164 train_time:7819ms step_avg:159.57ms
step:60/1530 train_loss:5.1328 train_time:7980ms step_avg:159.59ms
step:61/1530 train_loss:4.8393 train_time:8140ms step_avg:159.60ms
step:62/1530 train_loss:4.9634 train_time:8299ms step_avg:159.61ms
step:63/1530 train_loss:4.9640 train_time:8461ms step_avg:159.63ms
step:64/1530 train_loss:4.9806 train_time:8621ms step_avg:159.65ms
step:65/1530 train_loss:4.7761 train_time:8782ms step_avg:159.67ms
step:66/1530 train_loss:4.8996 train_time:8942ms step_avg:159.67ms
step:67/1530 train_loss:4.8256 train_time:9105ms step_avg:159.73ms
step:68/1530 train_loss:5.1034 train_time:9266ms step_avg:159.76ms
step:69/1530 train_loss:4.7059 train_time:9425ms step_avg:159.75ms
step:70/1530 train_loss:4.8626 train_time:9587ms step_avg:159.78ms
step:71/1530 train_loss:4.9704 train_time:9748ms step_avg:159.80ms
step:72/1530 train_loss:4.8786 train_time:9908ms step_avg:159.81ms
step:73/1530 train_loss:4.7416 train_time:10070ms step_avg:159.83ms
step:74/1530 train_loss:4.8936 train_time:10230ms step_avg:159.84ms
step:75/1530 train_loss:4.8276 train_time:10391ms step_avg:159.86ms
step:76/1530 train_loss:4.7822 train_time:10551ms step_avg:159.87ms
step:77/1530 train_loss:4.9019 train_time:10712ms step_avg:159.88ms
step:78/1530 train_loss:5.1104 train_time:10872ms step_avg:159.89ms
step:79/1530 train_loss:4.8005 train_time:11032ms step_avg:159.88ms
step:80/1530 train_loss:4.8517 train_time:11193ms step_avg:159.90ms
step:81/1530 train_loss:4.6364 train_time:11354ms step_avg:159.92ms
step:82/1530 train_loss:4.8107 train_time:11515ms step_avg:159.93ms
step:83/1530 train_loss:4.7747 train_time:11676ms step_avg:159.94ms
step:84/1530 train_loss:4.7556 train_time:11835ms step_avg:159.94ms
step:85/1530 train_loss:4.6195 train_time:11996ms step_avg:159.95ms
step:86/1530 train_loss:4.8198 train_time:12156ms step_avg:159.95ms
step:87/1530 train_loss:4.7266 train_time:12316ms step_avg:159.95ms
step:88/1530 train_loss:4.7131 train_time:12477ms step_avg:159.96ms
step:89/1530 train_loss:4.6766 train_time:12637ms step_avg:159.96ms
step:90/1530 train_loss:4.6120 train_time:12797ms step_avg:159.97ms
step:91/1530 train_loss:4.6074 train_time:12958ms step_avg:159.98ms
step:92/1530 train_loss:4.7602 train_time:13119ms step_avg:159.98ms
step:93/1530 train_loss:4.5920 train_time:13279ms step_avg:159.98ms
step:94/1530 train_loss:4.6315 train_time:13439ms step_avg:159.99ms
step:95/1530 train_loss:4.6536 train_time:13600ms step_avg:160.00ms
step:96/1530 train_loss:4.5735 train_time:13760ms step_avg:160.01ms
step:97/1530 train_loss:4.6112 train_time:13921ms step_avg:160.01ms
step:98/1530 train_loss:4.5543 train_time:14082ms step_avg:160.02ms
step:99/1530 train_loss:4.6254 train_time:14242ms step_avg:160.02ms
step:100/1530 train_loss:4.6507 train_time:14403ms step_avg:160.03ms
step:101/1530 train_loss:4.5112 train_time:14564ms step_avg:160.04ms
step:102/1530 train_loss:4.6849 train_time:14724ms step_avg:160.05ms
step:103/1530 train_loss:4.5643 train_time:14884ms step_avg:160.04ms
step:104/1530 train_loss:4.5281 train_time:15047ms step_avg:160.07ms
step:105/1530 train_loss:4.5354 train_time:15207ms step_avg:160.08ms
step:106/1530 train_loss:4.5793 train_time:15369ms step_avg:160.09ms
step:107/1530 train_loss:4.4975 train_time:15528ms step_avg:160.09ms
step:108/1530 train_loss:4.3505 train_time:15689ms step_avg:160.10ms
step:109/1530 train_loss:4.4880 train_time:15850ms step_avg:160.10ms
step:110/1530 train_loss:4.4750 train_time:16010ms step_avg:160.10ms
step:111/1530 train_loss:4.4194 train_time:16171ms step_avg:160.10ms
step:112/1530 train_loss:4.5816 train_time:16330ms step_avg:160.10ms
step:113/1530 train_loss:4.4731 train_time:16492ms step_avg:160.11ms
step:114/1530 train_loss:4.3517 train_time:16653ms step_avg:160.12ms
step:115/1530 train_loss:4.4910 train_time:16815ms step_avg:160.15ms
step:116/1530 train_loss:4.4505 train_time:16980ms step_avg:160.19ms
step:117/1530 train_loss:4.3540 train_time:17144ms step_avg:160.23ms
step:118/1530 train_loss:4.5758 train_time:17309ms step_avg:160.27ms
step:119/1530 train_loss:4.4335 train_time:17473ms step_avg:160.31ms
step:120/1530 train_loss:4.3138 train_time:17637ms step_avg:160.34ms
step:121/1530 train_loss:4.2911 train_time:17801ms step_avg:160.37ms
step:122/1530 train_loss:4.4450 train_time:17964ms step_avg:160.40ms
step:123/1530 train_loss:4.2716 train_time:18130ms step_avg:160.44ms
step:124/1530 train_loss:4.5665 train_time:18294ms step_avg:160.48ms
step:125/1530 train_loss:4.4376 train_time:18457ms step_avg:160.50ms
step:125/1530 val_loss:4.3899 train_time:18505ms step_avg:160.91ms
step:126/1530 train_loss:4.4000 train_time:18625ms step_avg:160.56ms
step:127/1530 train_loss:4.4220 train_time:18790ms step_avg:160.60ms
step:128/1530 train_loss:4.3629 train_time:18955ms step_avg:160.64ms
step:129/1530 train_loss:4.6634 train_time:19120ms step_avg:160.67ms
step:130/1530 train_loss:4.3375 train_time:19285ms step_avg:160.70ms
step:131/1530 train_loss:4.3788 train_time:19448ms step_avg:160.73ms
step:132/1530 train_loss:4.3269 train_time:19612ms step_avg:160.75ms
step:133/1530 train_loss:4.4499 train_time:19777ms step_avg:160.79ms
step:134/1530 train_loss:4.2680 train_time:19942ms step_avg:160.82ms
step:135/1530 train_loss:4.4454 train_time:20105ms step_avg:160.84ms
step:136/1530 train_loss:4.2074 train_time:20269ms step_avg:160.87ms
step:137/1530 train_loss:4.3628 train_time:20433ms step_avg:160.89ms
step:138/1530 train_loss:4.2760 train_time:20598ms step_avg:160.92ms
step:139/1530 train_loss:4.3803 train_time:20763ms step_avg:160.96ms
step:140/1530 train_loss:4.4581 train_time:20928ms step_avg:160.98ms
step:141/1530 train_loss:4.3090 train_time:21092ms step_avg:161.00ms
step:142/1530 train_loss:4.2991 train_time:21257ms step_avg:161.03ms
step:143/1530 train_loss:4.2502 train_time:21422ms step_avg:161.06ms
step:144/1530 train_loss:4.3409 train_time:21586ms step_avg:161.09ms
step:145/1530 train_loss:4.2923 train_time:21750ms step_avg:161.11ms
step:146/1530 train_loss:4.1528 train_time:21914ms step_avg:161.13ms
step:147/1530 train_loss:4.3054 train_time:22078ms step_avg:161.15ms
step:148/1530 train_loss:4.3523 train_time:22243ms step_avg:161.18ms
step:149/1530 train_loss:4.2879 train_time:22406ms step_avg:161.19ms
step:150/1530 train_loss:4.4281 train_time:22570ms step_avg:161.22ms
step:151/1530 train_loss:4.2587 train_time:22735ms step_avg:161.24ms
step:152/1530 train_loss:4.2682 train_time:22901ms step_avg:161.27ms
step:153/1530 train_loss:4.3681 train_time:23067ms step_avg:161.31ms
step:154/1530 train_loss:4.3757 train_time:23229ms step_avg:161.31ms
step:155/1530 train_loss:4.2744 train_time:23393ms step_avg:161.33ms
step:156/1530 train_loss:4.3322 train_time:23559ms step_avg:161.36ms
step:157/1530 train_loss:4.3885 train_time:23723ms step_avg:161.38ms
step:158/1530 train_loss:4.2338 train_time:23887ms step_avg:161.40ms
step:159/1530 train_loss:4.2991 train_time:24051ms step_avg:161.42ms
step:160/1530 train_loss:4.1194 train_time:24215ms step_avg:161.43ms
step:161/1530 train_loss:4.3412 train_time:24379ms step_avg:161.45ms
step:162/1530 train_loss:4.3463 train_time:24544ms step_avg:161.48ms
step:163/1530 train_loss:4.3352 train_time:24708ms step_avg:161.49ms
step:164/1530 train_loss:4.1739 train_time:24872ms step_avg:161.51ms
step:165/1530 train_loss:4.2730 train_time:25037ms step_avg:161.53ms
step:166/1530 train_loss:4.3270 train_time:25202ms step_avg:161.55ms
step:167/1530 train_loss:4.2004 train_time:25366ms step_avg:161.57ms
step:168/1530 train_loss:4.2778 train_time:25529ms step_avg:161.58ms
step:169/1530 train_loss:4.1564 train_time:25693ms step_avg:161.59ms
step:170/1530 train_loss:4.0267 train_time:25859ms step_avg:161.62ms
step:171/1530 train_loss:4.2018 train_time:26023ms step_avg:161.63ms
step:172/1530 train_loss:4.2090 train_time:26187ms step_avg:161.65ms
step:173/1530 train_loss:4.2572 train_time:26351ms step_avg:161.66ms
step:174/1530 train_loss:4.4103 train_time:26514ms step_avg:161.67ms
step:175/1530 train_loss:4.2419 train_time:26677ms step_avg:161.68ms
step:176/1530 train_loss:4.0890 train_time:26840ms step_avg:161.69ms
step:177/1530 train_loss:4.0615 train_time:27003ms step_avg:161.69ms
step:178/1530 train_loss:4.1781 train_time:27166ms step_avg:161.70ms
step:179/1530 train_loss:4.1194 train_time:27329ms step_avg:161.71ms
step:180/1530 train_loss:4.1056 train_time:27491ms step_avg:161.71ms
step:181/1530 train_loss:4.2898 train_time:27655ms step_avg:161.72ms
step:182/1530 train_loss:4.1578 train_time:27819ms step_avg:161.74ms
step:183/1530 train_loss:4.1226 train_time:27983ms step_avg:161.75ms
step:184/1530 train_loss:4.1201 train_time:28146ms step_avg:161.76ms
step:185/1530 train_loss:4.1974 train_time:28309ms step_avg:161.76ms
step:186/1530 train_loss:4.1706 train_time:28472ms step_avg:161.77ms
step:187/1530 train_loss:4.2334 train_time:28634ms step_avg:161.78ms
step:188/1530 train_loss:4.1594 train_time:28936ms step_avg:162.56ms
step:189/1530 train_loss:4.1004 train_time:29264ms step_avg:163.49ms
step:190/1530 train_loss:4.2014 train_time:29429ms step_avg:163.49ms
step:191/1530 train_loss:4.0735 train_time:29591ms step_avg:163.49ms
step:192/1530 train_loss:4.0229 train_time:29754ms step_avg:163.48ms
step:193/1530 train_loss:4.2538 train_time:29917ms step_avg:163.48ms
step:194/1530 train_loss:4.1713 train_time:30080ms step_avg:163.48ms
step:195/1530 train_loss:4.3538 train_time:30244ms step_avg:163.48ms
step:196/1530 train_loss:4.1710 train_time:30405ms step_avg:163.47ms
step:197/1530 train_loss:4.0378 train_time:30569ms step_avg:163.47ms
step:198/1530 train_loss:4.1707 train_time:30732ms step_avg:163.47ms
step:199/1530 train_loss:4.0198 train_time:30895ms step_avg:163.47ms
step:200/1530 train_loss:4.1018 train_time:31059ms step_avg:163.47ms
step:201/1530 train_loss:3.9920 train_time:31222ms step_avg:163.47ms
step:202/1530 train_loss:4.2481 train_time:31385ms step_avg:163.46ms
step:203/1530 train_loss:4.0649 train_time:31547ms step_avg:163.45ms
step:204/1530 train_loss:4.1842 train_time:31709ms step_avg:163.45ms
step:205/1530 train_loss:4.2338 train_time:31872ms step_avg:163.44ms
step:206/1530 train_loss:3.9370 train_time:32035ms step_avg:163.45ms
step:207/1530 train_loss:4.0763 train_time:32199ms step_avg:163.45ms
step:208/1530 train_loss:4.0919 train_time:32360ms step_avg:163.44ms
step:209/1530 train_loss:4.2296 train_time:32524ms step_avg:163.44ms
step:210/1530 train_loss:4.1701 train_time:32688ms step_avg:163.44ms
step:211/1530 train_loss:4.0638 train_time:32851ms step_avg:163.44ms
step:212/1530 train_loss:4.1235 train_time:33015ms step_avg:163.44ms
step:213/1530 train_loss:4.0471 train_time:33178ms step_avg:163.44ms
step:214/1530 train_loss:4.1075 train_time:33340ms step_avg:163.43ms
step:215/1530 train_loss:3.9511 train_time:33504ms step_avg:163.43ms
step:216/1530 train_loss:3.9962 train_time:33667ms step_avg:163.43ms
step:217/1530 train_loss:4.0146 train_time:33830ms step_avg:163.43ms
step:218/1530 train_loss:4.0751 train_time:33992ms step_avg:163.42ms
step:219/1530 train_loss:4.0631 train_time:34155ms step_avg:163.42ms
step:220/1530 train_loss:4.0775 train_time:34317ms step_avg:163.42ms
step:221/1530 train_loss:4.0839 train_time:34480ms step_avg:163.41ms
step:222/1530 train_loss:3.9853 train_time:34644ms step_avg:163.42ms
step:223/1530 train_loss:3.9744 train_time:34806ms step_avg:163.41ms
step:224/1530 train_loss:4.2899 train_time:34970ms step_avg:163.41ms
step:225/1530 train_loss:3.9195 train_time:35132ms step_avg:163.41ms
step:226/1530 train_loss:3.9880 train_time:35295ms step_avg:163.40ms
step:227/1530 train_loss:3.9763 train_time:35459ms step_avg:163.41ms
step:228/1530 train_loss:4.1418 train_time:35624ms step_avg:163.41ms
step:229/1530 train_loss:3.9193 train_time:35790ms step_avg:163.42ms
step:230/1530 train_loss:4.0368 train_time:35955ms step_avg:163.43ms
step:231/1530 train_loss:3.8969 train_time:36122ms step_avg:163.45ms
step:232/1530 train_loss:3.9621 train_time:36287ms step_avg:163.46ms
step:233/1530 train_loss:4.0845 train_time:36453ms step_avg:163.47ms
step:234/1530 train_loss:4.0274 train_time:36619ms step_avg:163.48ms
step:235/1530 train_loss:3.8968 train_time:36787ms step_avg:163.50ms
step:236/1530 train_loss:4.0779 train_time:36952ms step_avg:163.51ms
step:237/1530 train_loss:4.0809 train_time:37117ms step_avg:163.51ms
step:238/1530 train_loss:3.9345 train_time:37284ms step_avg:163.53ms
step:239/1530 train_loss:4.0727 train_time:37451ms step_avg:163.54ms
step:240/1530 train_loss:4.1079 train_time:37617ms step_avg:163.55ms
step:241/1530 train_loss:3.9613 train_time:37783ms step_avg:163.56ms
step:242/1530 train_loss:4.1350 train_time:37949ms step_avg:163.57ms
step:243/1530 train_loss:3.9992 train_time:38115ms step_avg:163.58ms
step:244/1530 train_loss:4.0699 train_time:38282ms step_avg:163.60ms
step:245/1530 train_loss:4.1417 train_time:38448ms step_avg:163.61ms
step:246/1530 train_loss:4.0536 train_time:38614ms step_avg:163.62ms
step:247/1530 train_loss:3.9962 train_time:38780ms step_avg:163.63ms
step:248/1530 train_loss:4.0922 train_time:38946ms step_avg:163.64ms
step:249/1530 train_loss:3.9175 train_time:39112ms step_avg:163.65ms
step:250/1530 train_loss:3.9660 train_time:39277ms step_avg:163.65ms
step:250/1530 val_loss:3.9936 train_time:39325ms step_avg:163.85ms
step:251/1530 train_loss:4.0660 train_time:39445ms step_avg:163.67ms
step:252/1530 train_loss:4.1558 train_time:39614ms step_avg:163.70ms
step:253/1530 train_loss:3.9246 train_time:39780ms step_avg:163.71ms
step:254/1530 train_loss:3.8708 train_time:39948ms step_avg:163.72ms
step:255/1530 train_loss:4.0777 train_time:40116ms step_avg:163.74ms
step:256/1530 train_loss:3.9833 train_time:40282ms step_avg:163.75ms
step:257/1530 train_loss:3.9844 train_time:40448ms step_avg:163.76ms
step:258/1530 train_loss:3.9776 train_time:40616ms step_avg:163.77ms
step:259/1530 train_loss:4.0256 train_time:40782ms step_avg:163.78ms
step:260/1530 train_loss:4.0518 train_time:40948ms step_avg:163.79ms
step:261/1530 train_loss:4.0146 train_time:41117ms step_avg:163.81ms
step:262/1530 train_loss:3.9845 train_time:41282ms step_avg:163.82ms
step:263/1530 train_loss:3.8904 train_time:41449ms step_avg:163.83ms
step:264/1530 train_loss:3.9772 train_time:41614ms step_avg:163.84ms
step:265/1530 train_loss:3.8584 train_time:41781ms step_avg:163.85ms
step:266/1530 train_loss:3.9171 train_time:41947ms step_avg:163.86ms
step:267/1530 train_loss:3.9239 train_time:42115ms step_avg:163.87ms
step:268/1530 train_loss:3.9550 train_time:42281ms step_avg:163.88ms
step:269/1530 train_loss:3.8367 train_time:42446ms step_avg:163.88ms
step:270/1530 train_loss:4.0932 train_time:42615ms step_avg:163.90ms
step:271/1530 train_loss:3.9616 train_time:42781ms step_avg:163.91ms
step:272/1530 train_loss:3.9162 train_time:42946ms step_avg:163.91ms
step:273/1530 train_loss:3.9335 train_time:43114ms step_avg:163.93ms
step:274/1530 train_loss:4.0428 train_time:43280ms step_avg:163.94ms
step:275/1530 train_loss:4.0599 train_time:43447ms step_avg:163.95ms
step:276/1530 train_loss:4.2295 train_time:43616ms step_avg:163.97ms
step:277/1530 train_loss:4.0345 train_time:43781ms step_avg:163.98ms
step:278/1530 train_loss:4.0739 train_time:43948ms step_avg:163.98ms
step:279/1530 train_loss:3.9908 train_time:44115ms step_avg:164.00ms
step:280/1530 train_loss:4.1764 train_time:44282ms step_avg:164.01ms
step:281/1530 train_loss:3.9686 train_time:44449ms step_avg:164.02ms
step:282/1530 train_loss:3.9368 train_time:44616ms step_avg:164.03ms
step:283/1530 train_loss:3.9028 train_time:44782ms step_avg:164.04ms
step:284/1530 train_loss:4.0392 train_time:44948ms step_avg:164.05ms
step:285/1530 train_loss:4.0659 train_time:45115ms step_avg:164.05ms
step:286/1530 train_loss:4.0823 train_time:45280ms step_avg:164.06ms
step:287/1530 train_loss:3.8993 train_time:45445ms step_avg:164.06ms
step:288/1530 train_loss:4.0104 train_time:45610ms step_avg:164.06ms
step:289/1530 train_loss:3.8638 train_time:45775ms step_avg:164.07ms
step:290/1530 train_loss:3.8533 train_time:45940ms step_avg:164.07ms
step:291/1530 train_loss:3.8936 train_time:46107ms step_avg:164.08ms
step:292/1530 train_loss:3.8568 train_time:46272ms step_avg:164.09ms
step:293/1530 train_loss:3.8962 train_time:46437ms step_avg:164.09ms
step:294/1530 train_loss:3.9261 train_time:46602ms step_avg:164.09ms
step:295/1530 train_loss:3.8311 train_time:46768ms step_avg:164.10ms
step:296/1530 train_loss:3.8577 train_time:46934ms step_avg:164.11ms
step:297/1530 train_loss:3.8630 train_time:47099ms step_avg:164.11ms
step:298/1530 train_loss:3.9704 train_time:47264ms step_avg:164.11ms
step:299/1530 train_loss:3.8164 train_time:47428ms step_avg:164.11ms
step:300/1530 train_loss:3.9579 train_time:47594ms step_avg:164.12ms
step:301/1530 train_loss:3.9616 train_time:47759ms step_avg:164.12ms
step:302/1530 train_loss:3.9287 train_time:47925ms step_avg:164.13ms
step:303/1530 train_loss:3.9679 train_time:48091ms step_avg:164.13ms
step:304/1530 train_loss:3.9616 train_time:48255ms step_avg:164.13ms
step:305/1530 train_loss:4.4492 train_time:48422ms step_avg:164.14ms
step:306/1530 train_loss:3.9369 train_time:48588ms step_avg:164.15ms
step:307/1530 train_loss:3.8308 train_time:48753ms step_avg:164.15ms
step:308/1530 train_loss:3.9709 train_time:48918ms step_avg:164.15ms
step:309/1530 train_loss:3.8607 train_time:49083ms step_avg:164.16ms
step:310/1530 train_loss:4.0756 train_time:49247ms step_avg:164.16ms
step:311/1530 train_loss:3.9243 train_time:49415ms step_avg:164.17ms
step:312/1530 train_loss:3.8544 train_time:49580ms step_avg:164.17ms
step:313/1530 train_loss:3.9299 train_time:49746ms step_avg:164.18ms
step:314/1530 train_loss:4.0575 train_time:49913ms step_avg:164.19ms
step:315/1530 train_loss:3.9365 train_time:50078ms step_avg:164.19ms
step:316/1530 train_loss:3.7869 train_time:50243ms step_avg:164.19ms
step:317/1530 train_loss:3.8667 train_time:50409ms step_avg:164.20ms
step:318/1530 train_loss:3.9168 train_time:50574ms step_avg:164.20ms
step:319/1530 train_loss:3.8874 train_time:50739ms step_avg:164.21ms
step:320/1530 train_loss:4.0008 train_time:50905ms step_avg:164.21ms
step:321/1530 train_loss:3.9530 train_time:51071ms step_avg:164.22ms
step:322/1530 train_loss:3.9265 train_time:51237ms step_avg:164.22ms
step:323/1530 train_loss:3.9994 train_time:51402ms step_avg:164.22ms
step:324/1530 train_loss:3.9478 train_time:51566ms step_avg:164.22ms
step:325/1530 train_loss:4.0084 train_time:51733ms step_avg:164.23ms
step:326/1530 train_loss:3.8903 train_time:51898ms step_avg:164.23ms
step:327/1530 train_loss:4.3960 train_time:52062ms step_avg:164.23ms
step:328/1530 train_loss:4.0692 train_time:52229ms step_avg:164.24ms
step:329/1530 train_loss:3.7935 train_time:52394ms step_avg:164.24ms
step:330/1530 train_loss:3.7376 train_time:52558ms step_avg:164.24ms
step:331/1530 train_loss:3.9734 train_time:52723ms step_avg:164.25ms
step:332/1530 train_loss:3.9159 train_time:52889ms step_avg:164.25ms
step:333/1530 train_loss:3.8788 train_time:53054ms step_avg:164.26ms
step:334/1530 train_loss:3.8341 train_time:53219ms step_avg:164.26ms
step:335/1530 train_loss:4.0043 train_time:53384ms step_avg:164.26ms
step:336/1530 train_loss:3.9549 train_time:53550ms step_avg:164.26ms
step:337/1530 train_loss:4.4195 train_time:53717ms step_avg:164.27ms
step:338/1530 train_loss:3.9276 train_time:53881ms step_avg:164.27ms
step:339/1530 train_loss:3.8563 train_time:54047ms step_avg:164.28ms
step:340/1530 train_loss:3.9282 train_time:54213ms step_avg:164.28ms
step:341/1530 train_loss:3.8489 train_time:54380ms step_avg:164.29ms
step:342/1530 train_loss:3.7998 train_time:54548ms step_avg:164.30ms
step:343/1530 train_loss:3.8323 train_time:54717ms step_avg:164.32ms
step:344/1530 train_loss:3.9840 train_time:54885ms step_avg:164.33ms
step:345/1530 train_loss:3.8117 train_time:55055ms step_avg:164.34ms
step:346/1530 train_loss:3.7678 train_time:55223ms step_avg:164.35ms
step:347/1530 train_loss:3.7915 train_time:55392ms step_avg:164.37ms
step:348/1530 train_loss:3.8549 train_time:55560ms step_avg:164.38ms
step:349/1530 train_loss:3.8236 train_time:55728ms step_avg:164.39ms
step:350/1530 train_loss:3.5661 train_time:55898ms step_avg:164.41ms
step:351/1530 train_loss:3.8187 train_time:56065ms step_avg:164.41ms
step:352/1530 train_loss:4.1727 train_time:56234ms step_avg:164.43ms
step:353/1530 train_loss:3.6547 train_time:56401ms step_avg:164.43ms
step:354/1530 train_loss:3.9192 train_time:56569ms step_avg:164.44ms
step:355/1530 train_loss:3.7791 train_time:56738ms step_avg:164.46ms
step:356/1530 train_loss:3.8783 train_time:56906ms step_avg:164.47ms
step:357/1530 train_loss:3.7602 train_time:57073ms step_avg:164.48ms
step:358/1530 train_loss:3.8540 train_time:57242ms step_avg:164.49ms
step:359/1530 train_loss:3.7804 train_time:57413ms step_avg:164.51ms
step:360/1530 train_loss:3.4254 train_time:57582ms step_avg:164.52ms
step:361/1530 train_loss:4.0172 train_time:57752ms step_avg:164.53ms
step:362/1530 train_loss:3.9136 train_time:57920ms step_avg:164.55ms
step:363/1530 train_loss:3.8330 train_time:58088ms step_avg:164.56ms
step:364/1530 train_loss:3.7338 train_time:58257ms step_avg:164.57ms
step:365/1530 train_loss:3.9116 train_time:58424ms step_avg:164.58ms
step:366/1530 train_loss:3.8559 train_time:58594ms step_avg:164.59ms
step:367/1530 train_loss:3.8525 train_time:58761ms step_avg:164.60ms
step:368/1530 train_loss:3.8471 train_time:58929ms step_avg:164.61ms
step:369/1530 train_loss:3.7434 train_time:59096ms step_avg:164.61ms
step:370/1530 train_loss:3.8765 train_time:59264ms step_avg:164.62ms
step:371/1530 train_loss:3.7222 train_time:59431ms step_avg:164.63ms
step:372/1530 train_loss:3.6877 train_time:59600ms step_avg:164.64ms
step:373/1530 train_loss:3.9134 train_time:59767ms step_avg:164.65ms
step:374/1530 train_loss:3.8237 train_time:59934ms step_avg:164.66ms
step:375/1530 train_loss:3.7989 train_time:60102ms step_avg:164.66ms
step:375/1530 val_loss:3.8223 train_time:60150ms step_avg:164.80ms