forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path75a3af7b-f1a6-47dc-a989-d95e4419ff31.txt
2165 lines (2092 loc) · 134 KB
/
75a3af7b-f1a6-47dc-a989-d95e4419ff31.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 02:32:12 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 117W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 39C P0 123W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 128W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31887ms step_avg:nanms
step:2/1530 train_loss:10.0659 train_time:31998ms step_avg:nanms
step:3/1530 train_loss:8.3701 train_time:32158ms step_avg:nanms
step:4/1530 train_loss:7.6351 train_time:32321ms step_avg:nanms
step:5/1530 train_loss:7.4663 train_time:32480ms step_avg:nanms
step:6/1530 train_loss:7.0036 train_time:32641ms step_avg:nanms
step:7/1530 train_loss:7.2106 train_time:32801ms step_avg:nanms
step:8/1530 train_loss:6.7408 train_time:32961ms step_avg:nanms
step:9/1530 train_loss:6.6228 train_time:33122ms step_avg:nanms
step:10/1530 train_loss:6.5036 train_time:33281ms step_avg:nanms
step:11/1530 train_loss:6.4316 train_time:115ms step_avg:nanms
step:12/1530 train_loss:6.3387 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2473 train_time:435ms step_avg:145.09ms
step:14/1530 train_loss:6.2911 train_time:596ms step_avg:148.88ms
step:15/1530 train_loss:6.1838 train_time:756ms step_avg:151.18ms
step:16/1530 train_loss:6.1226 train_time:917ms step_avg:152.87ms
step:17/1530 train_loss:6.1706 train_time:1077ms step_avg:153.85ms
step:18/1530 train_loss:5.9935 train_time:1238ms step_avg:154.70ms
step:19/1530 train_loss:5.9957 train_time:1398ms step_avg:155.32ms
step:20/1530 train_loss:5.7063 train_time:1558ms step_avg:155.77ms
step:21/1530 train_loss:5.9577 train_time:1719ms step_avg:156.25ms
step:22/1530 train_loss:6.1666 train_time:1879ms step_avg:156.59ms
step:23/1530 train_loss:5.8527 train_time:2039ms step_avg:156.84ms
step:24/1530 train_loss:6.0269 train_time:2200ms step_avg:157.13ms
step:25/1530 train_loss:5.6834 train_time:2360ms step_avg:157.35ms
step:26/1530 train_loss:5.5982 train_time:2521ms step_avg:157.55ms
step:27/1530 train_loss:5.7523 train_time:2681ms step_avg:157.71ms
step:28/1530 train_loss:5.4174 train_time:2841ms step_avg:157.82ms
step:29/1530 train_loss:5.6727 train_time:3000ms step_avg:157.92ms
step:30/1530 train_loss:5.4735 train_time:3161ms step_avg:158.04ms
step:31/1530 train_loss:5.4294 train_time:3321ms step_avg:158.14ms
step:32/1530 train_loss:5.2855 train_time:3481ms step_avg:158.25ms
step:33/1530 train_loss:5.5829 train_time:3641ms step_avg:158.31ms
step:34/1530 train_loss:5.5077 train_time:3802ms step_avg:158.42ms
step:35/1530 train_loss:5.6070 train_time:3962ms step_avg:158.46ms
step:36/1530 train_loss:5.5333 train_time:4121ms step_avg:158.50ms
step:37/1530 train_loss:5.4493 train_time:4281ms step_avg:158.56ms
step:38/1530 train_loss:5.3193 train_time:4441ms step_avg:158.62ms
step:39/1530 train_loss:5.3190 train_time:4601ms step_avg:158.67ms
step:40/1530 train_loss:5.2459 train_time:4761ms step_avg:158.72ms
step:41/1530 train_loss:5.2215 train_time:4921ms step_avg:158.73ms
step:42/1530 train_loss:5.1662 train_time:5081ms step_avg:158.77ms
step:43/1530 train_loss:5.2722 train_time:5240ms step_avg:158.80ms
step:44/1530 train_loss:5.2583 train_time:5400ms step_avg:158.84ms
step:45/1530 train_loss:5.3915 train_time:5561ms step_avg:158.88ms
step:46/1530 train_loss:5.1646 train_time:5720ms step_avg:158.89ms
step:47/1530 train_loss:5.0571 train_time:5880ms step_avg:158.91ms
step:48/1530 train_loss:5.2098 train_time:6040ms step_avg:158.95ms
step:49/1530 train_loss:5.1370 train_time:6200ms step_avg:158.98ms
step:50/1530 train_loss:5.2510 train_time:6360ms step_avg:158.99ms
step:51/1530 train_loss:5.1463 train_time:6520ms step_avg:159.03ms
step:52/1530 train_loss:5.0478 train_time:6680ms step_avg:159.05ms
step:53/1530 train_loss:5.1640 train_time:6840ms step_avg:159.08ms
step:54/1530 train_loss:5.0188 train_time:7000ms step_avg:159.10ms
step:55/1530 train_loss:5.4206 train_time:7160ms step_avg:159.12ms
step:56/1530 train_loss:5.0310 train_time:7321ms step_avg:159.14ms
step:57/1530 train_loss:4.8848 train_time:7480ms step_avg:159.15ms
step:58/1530 train_loss:5.0469 train_time:7641ms step_avg:159.18ms
step:59/1530 train_loss:5.0186 train_time:7801ms step_avg:159.20ms
step:60/1530 train_loss:5.1343 train_time:7960ms step_avg:159.21ms
step:61/1530 train_loss:4.8472 train_time:8120ms step_avg:159.22ms
step:62/1530 train_loss:4.9734 train_time:8280ms step_avg:159.23ms
step:63/1530 train_loss:4.9649 train_time:8440ms step_avg:159.25ms
step:64/1530 train_loss:4.9477 train_time:8600ms step_avg:159.27ms
step:65/1530 train_loss:4.7876 train_time:8761ms step_avg:159.29ms
step:66/1530 train_loss:4.9162 train_time:8921ms step_avg:159.31ms
step:67/1530 train_loss:4.8282 train_time:9082ms step_avg:159.33ms
step:68/1530 train_loss:5.1051 train_time:9241ms step_avg:159.33ms
step:69/1530 train_loss:4.7295 train_time:9401ms step_avg:159.34ms
step:70/1530 train_loss:4.8575 train_time:9561ms step_avg:159.35ms
step:71/1530 train_loss:4.9787 train_time:9721ms step_avg:159.35ms
step:72/1530 train_loss:4.8895 train_time:9881ms step_avg:159.36ms
step:73/1530 train_loss:4.7688 train_time:10040ms step_avg:159.37ms
step:74/1530 train_loss:4.9256 train_time:10200ms step_avg:159.38ms
step:75/1530 train_loss:4.8684 train_time:10361ms step_avg:159.40ms
step:76/1530 train_loss:4.7979 train_time:10521ms step_avg:159.41ms
step:77/1530 train_loss:4.9198 train_time:10682ms step_avg:159.43ms
step:78/1530 train_loss:5.1339 train_time:10841ms step_avg:159.43ms
step:79/1530 train_loss:4.7995 train_time:11002ms step_avg:159.45ms
step:80/1530 train_loss:4.8562 train_time:11163ms step_avg:159.48ms
step:81/1530 train_loss:4.6492 train_time:11323ms step_avg:159.48ms
step:82/1530 train_loss:4.8252 train_time:11484ms step_avg:159.50ms
step:83/1530 train_loss:4.7886 train_time:11645ms step_avg:159.52ms
step:84/1530 train_loss:4.7746 train_time:11805ms step_avg:159.53ms
step:85/1530 train_loss:4.6292 train_time:11965ms step_avg:159.53ms
step:86/1530 train_loss:4.8513 train_time:12126ms step_avg:159.55ms
step:87/1530 train_loss:4.7454 train_time:12287ms step_avg:159.58ms
step:88/1530 train_loss:4.7540 train_time:12448ms step_avg:159.59ms
step:89/1530 train_loss:4.7191 train_time:12610ms step_avg:159.62ms
step:90/1530 train_loss:4.6791 train_time:12772ms step_avg:159.65ms
step:91/1530 train_loss:4.6788 train_time:12933ms step_avg:159.67ms
step:92/1530 train_loss:4.8064 train_time:13093ms step_avg:159.67ms
step:93/1530 train_loss:4.6153 train_time:13253ms step_avg:159.67ms
step:94/1530 train_loss:4.6516 train_time:13414ms step_avg:159.69ms
step:95/1530 train_loss:4.6937 train_time:13576ms step_avg:159.71ms
step:96/1530 train_loss:4.5961 train_time:13736ms step_avg:159.72ms
step:97/1530 train_loss:4.6416 train_time:13896ms step_avg:159.73ms
step:98/1530 train_loss:4.5932 train_time:14056ms step_avg:159.72ms
step:99/1530 train_loss:4.6692 train_time:14217ms step_avg:159.74ms
step:100/1530 train_loss:4.6870 train_time:14378ms step_avg:159.75ms
step:101/1530 train_loss:4.5556 train_time:14539ms step_avg:159.77ms
step:102/1530 train_loss:4.7175 train_time:14699ms step_avg:159.77ms
step:103/1530 train_loss:4.6021 train_time:14859ms step_avg:159.77ms
step:104/1530 train_loss:4.5502 train_time:15019ms step_avg:159.78ms
step:105/1530 train_loss:4.5677 train_time:15179ms step_avg:159.78ms
step:106/1530 train_loss:4.6250 train_time:15340ms step_avg:159.79ms
step:107/1530 train_loss:4.5157 train_time:15500ms step_avg:159.79ms
step:108/1530 train_loss:4.3647 train_time:15660ms step_avg:159.79ms
step:109/1530 train_loss:4.4960 train_time:15820ms step_avg:159.80ms
step:110/1530 train_loss:4.5055 train_time:15980ms step_avg:159.80ms
step:111/1530 train_loss:4.4464 train_time:16140ms step_avg:159.81ms
step:112/1530 train_loss:4.5991 train_time:16301ms step_avg:159.81ms
step:113/1530 train_loss:4.5185 train_time:16462ms step_avg:159.82ms
step:114/1530 train_loss:4.3846 train_time:16622ms step_avg:159.82ms
step:115/1530 train_loss:4.5113 train_time:16784ms step_avg:159.85ms
step:116/1530 train_loss:4.4775 train_time:16948ms step_avg:159.89ms
step:117/1530 train_loss:4.3730 train_time:17115ms step_avg:159.95ms
step:118/1530 train_loss:4.5995 train_time:17278ms step_avg:159.98ms
step:119/1530 train_loss:4.4689 train_time:17441ms step_avg:160.01ms
step:120/1530 train_loss:4.3322 train_time:17606ms step_avg:160.06ms
step:121/1530 train_loss:4.3035 train_time:17769ms step_avg:160.08ms
step:122/1530 train_loss:4.4658 train_time:17933ms step_avg:160.12ms
step:123/1530 train_loss:4.3041 train_time:18097ms step_avg:160.15ms
step:124/1530 train_loss:4.6059 train_time:18259ms step_avg:160.17ms
step:125/1530 train_loss:4.4652 train_time:18423ms step_avg:160.20ms
step:125/1530 val_loss:4.4170 train_time:18470ms step_avg:160.61ms
step:126/1530 train_loss:4.4333 train_time:18590ms step_avg:160.26ms
step:127/1530 train_loss:4.4482 train_time:18754ms step_avg:160.29ms
step:128/1530 train_loss:4.3782 train_time:18918ms step_avg:160.32ms
step:129/1530 train_loss:4.6842 train_time:19084ms step_avg:160.37ms
step:130/1530 train_loss:4.3739 train_time:19248ms step_avg:160.40ms
step:131/1530 train_loss:4.4023 train_time:19411ms step_avg:160.42ms
step:132/1530 train_loss:4.3498 train_time:19576ms step_avg:160.46ms
step:133/1530 train_loss:4.4596 train_time:19741ms step_avg:160.50ms
step:134/1530 train_loss:4.2679 train_time:19905ms step_avg:160.52ms
step:135/1530 train_loss:4.4509 train_time:20069ms step_avg:160.55ms
step:136/1530 train_loss:4.2174 train_time:20232ms step_avg:160.57ms
step:137/1530 train_loss:4.3858 train_time:20395ms step_avg:160.59ms
step:138/1530 train_loss:4.2880 train_time:20560ms step_avg:160.63ms
step:139/1530 train_loss:4.3897 train_time:20725ms step_avg:160.66ms
step:140/1530 train_loss:4.4817 train_time:20890ms step_avg:160.69ms
step:141/1530 train_loss:4.3140 train_time:21054ms step_avg:160.72ms
step:142/1530 train_loss:4.3069 train_time:21218ms step_avg:160.74ms
step:143/1530 train_loss:4.2676 train_time:21381ms step_avg:160.76ms
step:144/1530 train_loss:4.3632 train_time:21546ms step_avg:160.79ms
step:145/1530 train_loss:4.3093 train_time:21710ms step_avg:160.82ms
step:146/1530 train_loss:4.1735 train_time:21874ms step_avg:160.84ms
step:147/1530 train_loss:4.3291 train_time:22038ms step_avg:160.86ms
step:148/1530 train_loss:4.3803 train_time:22201ms step_avg:160.88ms
step:149/1530 train_loss:4.3148 train_time:22366ms step_avg:160.91ms
step:150/1530 train_loss:4.4400 train_time:22529ms step_avg:160.92ms
step:151/1530 train_loss:4.2753 train_time:22693ms step_avg:160.94ms
step:152/1530 train_loss:4.2729 train_time:22856ms step_avg:160.96ms
step:153/1530 train_loss:4.3789 train_time:23020ms step_avg:160.98ms
step:154/1530 train_loss:4.3832 train_time:23186ms step_avg:161.02ms
step:155/1530 train_loss:4.2751 train_time:23350ms step_avg:161.03ms
step:156/1530 train_loss:4.3461 train_time:23514ms step_avg:161.05ms
step:157/1530 train_loss:4.4128 train_time:23677ms step_avg:161.07ms
step:158/1530 train_loss:4.2576 train_time:23841ms step_avg:161.09ms
step:159/1530 train_loss:4.3143 train_time:24005ms step_avg:161.11ms
step:160/1530 train_loss:4.1348 train_time:24169ms step_avg:161.13ms
step:161/1530 train_loss:4.3624 train_time:24332ms step_avg:161.14ms
step:162/1530 train_loss:4.3721 train_time:24496ms step_avg:161.16ms
step:163/1530 train_loss:4.3515 train_time:24660ms step_avg:161.18ms
step:164/1530 train_loss:4.1977 train_time:24823ms step_avg:161.19ms
step:165/1530 train_loss:4.2903 train_time:24988ms step_avg:161.22ms
step:166/1530 train_loss:4.3521 train_time:25152ms step_avg:161.23ms
step:167/1530 train_loss:4.2126 train_time:25316ms step_avg:161.25ms
step:168/1530 train_loss:4.2944 train_time:25481ms step_avg:161.27ms
step:169/1530 train_loss:4.1742 train_time:25646ms step_avg:161.29ms
step:170/1530 train_loss:4.0275 train_time:25810ms step_avg:161.31ms
step:171/1530 train_loss:4.2281 train_time:25972ms step_avg:161.32ms
step:172/1530 train_loss:4.2243 train_time:26134ms step_avg:161.32ms
step:173/1530 train_loss:4.2788 train_time:26297ms step_avg:161.33ms
step:174/1530 train_loss:4.4229 train_time:26461ms step_avg:161.35ms
step:175/1530 train_loss:4.2504 train_time:26624ms step_avg:161.36ms
step:176/1530 train_loss:4.1026 train_time:26787ms step_avg:161.37ms
step:177/1530 train_loss:4.0645 train_time:26951ms step_avg:161.38ms
step:178/1530 train_loss:4.1857 train_time:27113ms step_avg:161.39ms
step:179/1530 train_loss:4.1291 train_time:27275ms step_avg:161.39ms
step:180/1530 train_loss:4.1219 train_time:27438ms step_avg:161.40ms
step:181/1530 train_loss:4.2980 train_time:27600ms step_avg:161.41ms
step:182/1530 train_loss:4.1524 train_time:27765ms step_avg:161.43ms
step:183/1530 train_loss:4.1305 train_time:27928ms step_avg:161.43ms
step:184/1530 train_loss:4.1334 train_time:28090ms step_avg:161.44ms
step:185/1530 train_loss:4.2153 train_time:28253ms step_avg:161.44ms
step:186/1530 train_loss:4.1731 train_time:28415ms step_avg:161.45ms
step:187/1530 train_loss:4.2403 train_time:28578ms step_avg:161.45ms
step:188/1530 train_loss:4.1703 train_time:28876ms step_avg:162.22ms
step:189/1530 train_loss:4.1183 train_time:29208ms step_avg:163.17ms
step:190/1530 train_loss:4.2156 train_time:29376ms step_avg:163.20ms
step:191/1530 train_loss:4.0853 train_time:29538ms step_avg:163.19ms
step:192/1530 train_loss:4.0310 train_time:29700ms step_avg:163.19ms
step:193/1530 train_loss:4.2622 train_time:29865ms step_avg:163.20ms
step:194/1530 train_loss:4.1820 train_time:30028ms step_avg:163.20ms
step:195/1530 train_loss:4.3597 train_time:30190ms step_avg:163.19ms
step:196/1530 train_loss:4.1846 train_time:30353ms step_avg:163.19ms
step:197/1530 train_loss:4.0554 train_time:30517ms step_avg:163.19ms
step:198/1530 train_loss:4.1833 train_time:30681ms step_avg:163.20ms
step:199/1530 train_loss:4.0417 train_time:30844ms step_avg:163.20ms
step:200/1530 train_loss:4.1231 train_time:31007ms step_avg:163.19ms
step:201/1530 train_loss:4.0288 train_time:31170ms step_avg:163.20ms
step:202/1530 train_loss:4.2620 train_time:31332ms step_avg:163.19ms
step:203/1530 train_loss:4.0676 train_time:31495ms step_avg:163.19ms
step:204/1530 train_loss:4.2035 train_time:31657ms step_avg:163.18ms
step:205/1530 train_loss:4.2585 train_time:31821ms step_avg:163.19ms
step:206/1530 train_loss:3.9465 train_time:31985ms step_avg:163.19ms
step:207/1530 train_loss:4.0747 train_time:32148ms step_avg:163.19ms
step:208/1530 train_loss:4.0997 train_time:32311ms step_avg:163.19ms
step:209/1530 train_loss:4.2353 train_time:32475ms step_avg:163.19ms
step:210/1530 train_loss:4.1747 train_time:32636ms step_avg:163.18ms
step:211/1530 train_loss:4.0712 train_time:32799ms step_avg:163.18ms
step:212/1530 train_loss:4.1271 train_time:32962ms step_avg:163.18ms
step:213/1530 train_loss:4.0646 train_time:33126ms step_avg:163.18ms
step:214/1530 train_loss:4.1291 train_time:33289ms step_avg:163.18ms
step:215/1530 train_loss:3.9787 train_time:33452ms step_avg:163.18ms
step:216/1530 train_loss:4.0079 train_time:33615ms step_avg:163.18ms
step:217/1530 train_loss:4.0149 train_time:33778ms step_avg:163.18ms
step:218/1530 train_loss:4.0869 train_time:33940ms step_avg:163.17ms
step:219/1530 train_loss:4.0812 train_time:34103ms step_avg:163.17ms
step:220/1530 train_loss:4.0904 train_time:34267ms step_avg:163.18ms
step:221/1530 train_loss:4.0978 train_time:34429ms step_avg:163.17ms
step:222/1530 train_loss:3.9985 train_time:34592ms step_avg:163.17ms
step:223/1530 train_loss:3.9991 train_time:34756ms step_avg:163.17ms
step:224/1530 train_loss:4.3046 train_time:34919ms step_avg:163.17ms
step:225/1530 train_loss:3.9320 train_time:35082ms step_avg:163.17ms
step:226/1530 train_loss:3.9861 train_time:35246ms step_avg:163.17ms
step:227/1530 train_loss:3.9836 train_time:35408ms step_avg:163.17ms
step:228/1530 train_loss:4.1484 train_time:35573ms step_avg:163.18ms
step:229/1530 train_loss:3.9210 train_time:35739ms step_avg:163.19ms
step:230/1530 train_loss:4.0453 train_time:35904ms step_avg:163.20ms
step:231/1530 train_loss:3.9079 train_time:36071ms step_avg:163.22ms
step:232/1530 train_loss:3.9711 train_time:36237ms step_avg:163.23ms
step:233/1530 train_loss:4.0912 train_time:36403ms step_avg:163.24ms
step:234/1530 train_loss:4.0362 train_time:36570ms step_avg:163.26ms
step:235/1530 train_loss:3.9068 train_time:36736ms step_avg:163.27ms
step:236/1530 train_loss:4.0883 train_time:36902ms step_avg:163.28ms
step:237/1530 train_loss:4.0822 train_time:37068ms step_avg:163.30ms
step:238/1530 train_loss:3.9544 train_time:37233ms step_avg:163.30ms
step:239/1530 train_loss:4.0963 train_time:37398ms step_avg:163.31ms
step:240/1530 train_loss:4.1295 train_time:37565ms step_avg:163.33ms
step:241/1530 train_loss:3.9774 train_time:37730ms step_avg:163.33ms
step:242/1530 train_loss:4.1552 train_time:37896ms step_avg:163.34ms
step:243/1530 train_loss:4.0101 train_time:38062ms step_avg:163.36ms
step:244/1530 train_loss:4.0858 train_time:38228ms step_avg:163.37ms
step:245/1530 train_loss:4.1438 train_time:38394ms step_avg:163.38ms
step:246/1530 train_loss:4.0616 train_time:38560ms step_avg:163.39ms
step:247/1530 train_loss:4.0148 train_time:38727ms step_avg:163.40ms
step:248/1530 train_loss:4.1124 train_time:38893ms step_avg:163.41ms
step:249/1530 train_loss:3.9331 train_time:39058ms step_avg:163.42ms
step:250/1530 train_loss:3.9836 train_time:39225ms step_avg:163.44ms
step:250/1530 val_loss:4.0139 train_time:39272ms step_avg:163.63ms
step:251/1530 train_loss:4.0791 train_time:39391ms step_avg:163.45ms
step:252/1530 train_loss:4.1730 train_time:39559ms step_avg:163.47ms
step:253/1530 train_loss:3.9400 train_time:39727ms step_avg:163.49ms
step:254/1530 train_loss:3.8890 train_time:39892ms step_avg:163.49ms
step:255/1530 train_loss:4.0839 train_time:40057ms step_avg:163.50ms
step:256/1530 train_loss:3.9997 train_time:40223ms step_avg:163.51ms
step:257/1530 train_loss:3.9997 train_time:40389ms step_avg:163.52ms
step:258/1530 train_loss:3.9983 train_time:40555ms step_avg:163.53ms
step:259/1530 train_loss:4.0384 train_time:40721ms step_avg:163.54ms
step:260/1530 train_loss:4.0664 train_time:40888ms step_avg:163.55ms
step:261/1530 train_loss:4.0344 train_time:41055ms step_avg:163.56ms
step:262/1530 train_loss:4.0016 train_time:41221ms step_avg:163.58ms
step:263/1530 train_loss:3.8984 train_time:41387ms step_avg:163.59ms
step:264/1530 train_loss:3.9982 train_time:41553ms step_avg:163.59ms
step:265/1530 train_loss:3.8803 train_time:41720ms step_avg:163.61ms
step:266/1530 train_loss:3.9264 train_time:41886ms step_avg:163.62ms
step:267/1530 train_loss:3.9358 train_time:42051ms step_avg:163.62ms
step:268/1530 train_loss:3.9755 train_time:42216ms step_avg:163.63ms
step:269/1530 train_loss:3.8627 train_time:42381ms step_avg:163.64ms
step:270/1530 train_loss:4.1089 train_time:42547ms step_avg:163.64ms
step:271/1530 train_loss:3.9780 train_time:42713ms step_avg:163.65ms
step:272/1530 train_loss:3.9335 train_time:42879ms step_avg:163.66ms
step:273/1530 train_loss:3.9524 train_time:43044ms step_avg:163.67ms
step:274/1530 train_loss:4.0399 train_time:43211ms step_avg:163.68ms
step:275/1530 train_loss:4.0762 train_time:43377ms step_avg:163.69ms
step:276/1530 train_loss:4.2361 train_time:43543ms step_avg:163.70ms
step:277/1530 train_loss:4.0433 train_time:43710ms step_avg:163.71ms
step:278/1530 train_loss:4.0965 train_time:43876ms step_avg:163.72ms
step:279/1530 train_loss:4.0060 train_time:44042ms step_avg:163.72ms
step:280/1530 train_loss:4.2096 train_time:44210ms step_avg:163.74ms
step:281/1530 train_loss:3.9816 train_time:44375ms step_avg:163.75ms
step:282/1530 train_loss:3.9508 train_time:44541ms step_avg:163.76ms
step:283/1530 train_loss:3.9206 train_time:44710ms step_avg:163.77ms
step:284/1530 train_loss:4.0606 train_time:44875ms step_avg:163.78ms
step:285/1530 train_loss:4.0691 train_time:45040ms step_avg:163.78ms
step:286/1530 train_loss:4.0935 train_time:45206ms step_avg:163.79ms
step:287/1530 train_loss:3.9188 train_time:45370ms step_avg:163.79ms
step:288/1530 train_loss:4.0161 train_time:45535ms step_avg:163.79ms
step:289/1530 train_loss:3.8782 train_time:45700ms step_avg:163.80ms
step:290/1530 train_loss:3.8662 train_time:45866ms step_avg:163.81ms
step:291/1530 train_loss:3.9223 train_time:46032ms step_avg:163.81ms
step:292/1530 train_loss:3.8692 train_time:46196ms step_avg:163.81ms
step:293/1530 train_loss:3.9102 train_time:46361ms step_avg:163.82ms
step:294/1530 train_loss:3.9443 train_time:46526ms step_avg:163.83ms
step:295/1530 train_loss:3.8458 train_time:46691ms step_avg:163.83ms
step:296/1530 train_loss:3.8626 train_time:46856ms step_avg:163.83ms
step:297/1530 train_loss:3.8704 train_time:47021ms step_avg:163.84ms
step:298/1530 train_loss:3.9848 train_time:47187ms step_avg:163.84ms
step:299/1530 train_loss:3.8306 train_time:47352ms step_avg:163.85ms
step:300/1530 train_loss:3.9793 train_time:47517ms step_avg:163.85ms
step:301/1530 train_loss:3.9735 train_time:47681ms step_avg:163.85ms
step:302/1530 train_loss:3.9393 train_time:47847ms step_avg:163.86ms
step:303/1530 train_loss:3.9823 train_time:48012ms step_avg:163.86ms
step:304/1530 train_loss:3.9671 train_time:48175ms step_avg:163.86ms
step:305/1530 train_loss:4.4585 train_time:48340ms step_avg:163.86ms
step:306/1530 train_loss:3.9444 train_time:48505ms step_avg:163.87ms
step:307/1530 train_loss:3.8405 train_time:48669ms step_avg:163.87ms
step:308/1530 train_loss:3.9836 train_time:48834ms step_avg:163.87ms
step:309/1530 train_loss:3.8808 train_time:48999ms step_avg:163.88ms
step:310/1530 train_loss:4.0859 train_time:49164ms step_avg:163.88ms
step:311/1530 train_loss:3.9323 train_time:49330ms step_avg:163.89ms
step:312/1530 train_loss:3.8716 train_time:49495ms step_avg:163.89ms
step:313/1530 train_loss:3.9446 train_time:49660ms step_avg:163.89ms
step:314/1530 train_loss:4.0710 train_time:49826ms step_avg:163.90ms
step:315/1530 train_loss:3.9549 train_time:49990ms step_avg:163.90ms
step:316/1530 train_loss:3.8074 train_time:50155ms step_avg:163.91ms
step:317/1530 train_loss:3.8803 train_time:50320ms step_avg:163.91ms
step:318/1530 train_loss:3.9290 train_time:50485ms step_avg:163.91ms
step:319/1530 train_loss:3.9082 train_time:50651ms step_avg:163.92ms
step:320/1530 train_loss:4.0204 train_time:50816ms step_avg:163.92ms
step:321/1530 train_loss:3.9643 train_time:50981ms step_avg:163.93ms
step:322/1530 train_loss:3.9335 train_time:51146ms step_avg:163.93ms
step:323/1530 train_loss:4.0113 train_time:51312ms step_avg:163.93ms
step:324/1530 train_loss:3.9503 train_time:51475ms step_avg:163.93ms
step:325/1530 train_loss:4.0196 train_time:51640ms step_avg:163.94ms
step:326/1530 train_loss:3.9070 train_time:51807ms step_avg:163.95ms
step:327/1530 train_loss:4.4020 train_time:51972ms step_avg:163.95ms
step:328/1530 train_loss:4.0771 train_time:52137ms step_avg:163.95ms
step:329/1530 train_loss:3.8048 train_time:52303ms step_avg:163.96ms
step:330/1530 train_loss:3.7620 train_time:52468ms step_avg:163.96ms
step:331/1530 train_loss:3.9827 train_time:52633ms step_avg:163.97ms
step:332/1530 train_loss:3.9198 train_time:52798ms step_avg:163.97ms
step:333/1530 train_loss:3.8950 train_time:52964ms step_avg:163.97ms
step:334/1530 train_loss:3.8524 train_time:53130ms step_avg:163.98ms
step:335/1530 train_loss:4.0163 train_time:53294ms step_avg:163.98ms
step:336/1530 train_loss:3.9676 train_time:53459ms step_avg:163.99ms
step:337/1530 train_loss:4.4224 train_time:53627ms step_avg:164.00ms
step:338/1530 train_loss:3.9534 train_time:53792ms step_avg:164.00ms
step:339/1530 train_loss:3.8714 train_time:53956ms step_avg:164.00ms
step:340/1530 train_loss:3.9410 train_time:54122ms step_avg:164.01ms
step:341/1530 train_loss:3.8633 train_time:54289ms step_avg:164.01ms
step:342/1530 train_loss:3.8188 train_time:54456ms step_avg:164.02ms
step:343/1530 train_loss:3.8474 train_time:54624ms step_avg:164.04ms
step:344/1530 train_loss:4.0025 train_time:54792ms step_avg:164.05ms
step:345/1530 train_loss:3.8220 train_time:54962ms step_avg:164.07ms
step:346/1530 train_loss:3.7703 train_time:55131ms step_avg:164.08ms
step:347/1530 train_loss:3.8048 train_time:55298ms step_avg:164.09ms
step:348/1530 train_loss:3.8669 train_time:55467ms step_avg:164.10ms
step:349/1530 train_loss:3.8383 train_time:55635ms step_avg:164.12ms
step:350/1530 train_loss:3.5736 train_time:55804ms step_avg:164.13ms
step:351/1530 train_loss:3.8371 train_time:55971ms step_avg:164.14ms
step:352/1530 train_loss:4.1836 train_time:56138ms step_avg:164.15ms
step:353/1530 train_loss:3.6619 train_time:56306ms step_avg:164.16ms
step:354/1530 train_loss:3.9339 train_time:56473ms step_avg:164.17ms
step:355/1530 train_loss:3.7908 train_time:56643ms step_avg:164.18ms
step:356/1530 train_loss:3.8916 train_time:56811ms step_avg:164.19ms
step:357/1530 train_loss:3.7614 train_time:56978ms step_avg:164.20ms
step:358/1530 train_loss:3.8778 train_time:57146ms step_avg:164.21ms
step:359/1530 train_loss:3.7707 train_time:57316ms step_avg:164.23ms
step:360/1530 train_loss:3.4415 train_time:57485ms step_avg:164.24ms
step:361/1530 train_loss:4.0225 train_time:57654ms step_avg:164.26ms
step:362/1530 train_loss:3.9217 train_time:57822ms step_avg:164.27ms
step:363/1530 train_loss:3.8463 train_time:57990ms step_avg:164.28ms
step:364/1530 train_loss:3.7514 train_time:58157ms step_avg:164.29ms
step:365/1530 train_loss:3.9185 train_time:58326ms step_avg:164.30ms
step:366/1530 train_loss:3.8682 train_time:58495ms step_avg:164.31ms
step:367/1530 train_loss:3.8623 train_time:58662ms step_avg:164.32ms
step:368/1530 train_loss:3.8538 train_time:58830ms step_avg:164.33ms
step:369/1530 train_loss:3.7486 train_time:58997ms step_avg:164.34ms
step:370/1530 train_loss:3.8854 train_time:59166ms step_avg:164.35ms
step:371/1530 train_loss:3.7368 train_time:59334ms step_avg:164.36ms
step:372/1530 train_loss:3.6981 train_time:59502ms step_avg:164.37ms
step:373/1530 train_loss:3.9243 train_time:59669ms step_avg:164.38ms
step:374/1530 train_loss:3.8360 train_time:59836ms step_avg:164.39ms
step:375/1530 train_loss:3.8048 train_time:60005ms step_avg:164.40ms
step:375/1530 val_loss:3.8338 train_time:60053ms step_avg:164.53ms