forked from KellerJordan/modded-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathb19b341a-bf8d-46f9-8076-fef1fcb7445e.txt
2165 lines (2092 loc) · 134 KB
/
b19b341a-bf8d-46f9-8076-fef1fcb7445e.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 02:38:29 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 114W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 37C P0 117W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 122W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 127W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31718ms step_avg:nanms
step:2/1530 train_loss:10.0751 train_time:31831ms step_avg:nanms
step:3/1530 train_loss:8.3533 train_time:31990ms step_avg:nanms
step:4/1530 train_loss:7.5922 train_time:32150ms step_avg:nanms
step:5/1530 train_loss:7.4689 train_time:32311ms step_avg:nanms
step:6/1530 train_loss:6.9960 train_time:32470ms step_avg:nanms
step:7/1530 train_loss:7.2182 train_time:32631ms step_avg:nanms
step:8/1530 train_loss:6.7392 train_time:32793ms step_avg:nanms
step:9/1530 train_loss:6.6227 train_time:32952ms step_avg:nanms
step:10/1530 train_loss:6.5007 train_time:33113ms step_avg:nanms
step:11/1530 train_loss:6.4443 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3307 train_time:276ms step_avg:nanms
step:13/1530 train_loss:6.2878 train_time:436ms step_avg:145.43ms
step:14/1530 train_loss:6.2192 train_time:596ms step_avg:148.98ms
step:15/1530 train_loss:6.1847 train_time:758ms step_avg:151.54ms
step:16/1530 train_loss:6.0960 train_time:919ms step_avg:153.15ms
step:17/1530 train_loss:6.1850 train_time:1080ms step_avg:154.27ms
step:18/1530 train_loss:5.9535 train_time:1240ms step_avg:155.04ms
step:19/1530 train_loss:6.0010 train_time:1401ms step_avg:155.67ms
step:20/1530 train_loss:5.6853 train_time:1562ms step_avg:156.15ms
step:21/1530 train_loss:5.9671 train_time:1721ms step_avg:156.46ms
step:22/1530 train_loss:6.2000 train_time:1883ms step_avg:156.91ms
step:23/1530 train_loss:5.8574 train_time:2043ms step_avg:157.16ms
step:24/1530 train_loss:6.0250 train_time:2203ms step_avg:157.36ms
step:25/1530 train_loss:5.6975 train_time:2364ms step_avg:157.60ms
step:26/1530 train_loss:5.5942 train_time:2523ms step_avg:157.71ms
step:27/1530 train_loss:5.7937 train_time:2684ms step_avg:157.86ms
step:28/1530 train_loss:5.4106 train_time:2844ms step_avg:158.01ms
step:29/1530 train_loss:5.6881 train_time:3005ms step_avg:158.16ms
step:30/1530 train_loss:5.4846 train_time:3165ms step_avg:158.23ms
step:31/1530 train_loss:5.4473 train_time:3324ms step_avg:158.30ms
step:32/1530 train_loss:5.2847 train_time:3486ms step_avg:158.46ms
step:33/1530 train_loss:5.5960 train_time:3646ms step_avg:158.53ms
step:34/1530 train_loss:5.5088 train_time:3807ms step_avg:158.64ms
step:35/1530 train_loss:5.6332 train_time:3968ms step_avg:158.72ms
step:36/1530 train_loss:5.5565 train_time:4128ms step_avg:158.78ms
step:37/1530 train_loss:5.4518 train_time:4289ms step_avg:158.85ms
step:38/1530 train_loss:5.3158 train_time:4449ms step_avg:158.89ms
step:39/1530 train_loss:5.3350 train_time:4609ms step_avg:158.94ms
step:40/1530 train_loss:5.2476 train_time:4769ms step_avg:158.98ms
step:41/1530 train_loss:5.2323 train_time:4929ms step_avg:159.01ms
step:42/1530 train_loss:5.1788 train_time:5089ms step_avg:159.04ms
step:43/1530 train_loss:5.2876 train_time:5250ms step_avg:159.08ms
step:44/1530 train_loss:5.2320 train_time:5410ms step_avg:159.11ms
step:45/1530 train_loss:5.3832 train_time:5570ms step_avg:159.14ms
step:46/1530 train_loss:5.1663 train_time:5730ms step_avg:159.16ms
step:47/1530 train_loss:5.0681 train_time:5890ms step_avg:159.19ms
step:48/1530 train_loss:5.1953 train_time:6049ms step_avg:159.20ms
step:49/1530 train_loss:5.1351 train_time:6209ms step_avg:159.21ms
step:50/1530 train_loss:5.2604 train_time:6370ms step_avg:159.26ms
step:51/1530 train_loss:5.1484 train_time:6530ms step_avg:159.26ms
step:52/1530 train_loss:5.0430 train_time:6689ms step_avg:159.27ms
step:53/1530 train_loss:5.1787 train_time:6850ms step_avg:159.30ms
step:54/1530 train_loss:5.0100 train_time:7010ms step_avg:159.31ms
step:55/1530 train_loss:5.4082 train_time:7170ms step_avg:159.32ms
step:56/1530 train_loss:5.0384 train_time:7330ms step_avg:159.34ms
step:57/1530 train_loss:4.9019 train_time:7490ms step_avg:159.36ms
step:58/1530 train_loss:5.0446 train_time:7650ms step_avg:159.37ms
step:59/1530 train_loss:5.0239 train_time:7810ms step_avg:159.38ms
step:60/1530 train_loss:5.1546 train_time:7971ms step_avg:159.42ms
step:61/1530 train_loss:4.8699 train_time:8131ms step_avg:159.43ms
step:62/1530 train_loss:4.9875 train_time:8290ms step_avg:159.43ms
step:63/1530 train_loss:4.9678 train_time:8451ms step_avg:159.45ms
step:64/1530 train_loss:4.9834 train_time:8611ms step_avg:159.46ms
step:65/1530 train_loss:4.7982 train_time:8772ms step_avg:159.49ms
step:66/1530 train_loss:4.9230 train_time:8931ms step_avg:159.48ms
step:67/1530 train_loss:4.8182 train_time:9092ms step_avg:159.50ms
step:68/1530 train_loss:5.1024 train_time:9252ms step_avg:159.52ms
step:69/1530 train_loss:4.7231 train_time:9412ms step_avg:159.53ms
step:70/1530 train_loss:4.8517 train_time:9573ms step_avg:159.54ms
step:71/1530 train_loss:4.9876 train_time:9733ms step_avg:159.55ms
step:72/1530 train_loss:4.9148 train_time:9892ms step_avg:159.56ms
step:73/1530 train_loss:4.8009 train_time:10052ms step_avg:159.55ms
step:74/1530 train_loss:4.9354 train_time:10213ms step_avg:159.57ms
step:75/1530 train_loss:4.9033 train_time:10374ms step_avg:159.60ms
step:76/1530 train_loss:4.8000 train_time:10534ms step_avg:159.60ms
step:77/1530 train_loss:4.9186 train_time:10693ms step_avg:159.60ms
step:78/1530 train_loss:5.1327 train_time:10853ms step_avg:159.61ms
step:79/1530 train_loss:4.8451 train_time:11014ms step_avg:159.62ms
step:80/1530 train_loss:4.8587 train_time:11173ms step_avg:159.62ms
step:81/1530 train_loss:4.6494 train_time:11333ms step_avg:159.62ms
step:82/1530 train_loss:4.8318 train_time:11493ms step_avg:159.62ms
step:83/1530 train_loss:4.7760 train_time:11653ms step_avg:159.63ms
step:84/1530 train_loss:4.7638 train_time:11813ms step_avg:159.63ms
step:85/1530 train_loss:4.6303 train_time:11974ms step_avg:159.65ms
step:86/1530 train_loss:4.8456 train_time:12134ms step_avg:159.65ms
step:87/1530 train_loss:4.7603 train_time:12293ms step_avg:159.65ms
step:88/1530 train_loss:4.7534 train_time:12454ms step_avg:159.67ms
step:89/1530 train_loss:4.7162 train_time:12615ms step_avg:159.69ms
step:90/1530 train_loss:4.6485 train_time:12777ms step_avg:159.71ms
step:91/1530 train_loss:4.6332 train_time:12937ms step_avg:159.71ms
step:92/1530 train_loss:4.7953 train_time:13097ms step_avg:159.72ms
step:93/1530 train_loss:4.6131 train_time:13257ms step_avg:159.73ms
step:94/1530 train_loss:4.6369 train_time:13418ms step_avg:159.74ms
step:95/1530 train_loss:4.6914 train_time:13580ms step_avg:159.77ms
step:96/1530 train_loss:4.5907 train_time:13742ms step_avg:159.79ms
step:97/1530 train_loss:4.6614 train_time:13902ms step_avg:159.79ms
step:98/1530 train_loss:4.6001 train_time:14063ms step_avg:159.80ms
step:99/1530 train_loss:4.6813 train_time:14222ms step_avg:159.80ms
step:100/1530 train_loss:4.6808 train_time:14383ms step_avg:159.82ms
step:101/1530 train_loss:4.5329 train_time:14544ms step_avg:159.82ms
step:102/1530 train_loss:4.6995 train_time:14704ms step_avg:159.82ms
step:103/1530 train_loss:4.5843 train_time:14864ms step_avg:159.83ms
step:104/1530 train_loss:4.5498 train_time:15024ms step_avg:159.83ms
step:105/1530 train_loss:4.5816 train_time:15185ms step_avg:159.84ms
step:106/1530 train_loss:4.6338 train_time:15345ms step_avg:159.85ms
step:107/1530 train_loss:4.5152 train_time:15506ms step_avg:159.85ms
step:108/1530 train_loss:4.3600 train_time:15666ms step_avg:159.86ms
step:109/1530 train_loss:4.4967 train_time:15825ms step_avg:159.85ms
step:110/1530 train_loss:4.4972 train_time:15986ms step_avg:159.86ms
step:111/1530 train_loss:4.4313 train_time:16147ms step_avg:159.87ms
step:112/1530 train_loss:4.5865 train_time:16308ms step_avg:159.88ms
step:113/1530 train_loss:4.4943 train_time:16468ms step_avg:159.89ms
step:114/1530 train_loss:4.3673 train_time:16628ms step_avg:159.88ms
step:115/1530 train_loss:4.5083 train_time:16791ms step_avg:159.91ms
step:116/1530 train_loss:4.4712 train_time:16954ms step_avg:159.95ms
step:117/1530 train_loss:4.3702 train_time:17119ms step_avg:159.99ms
step:118/1530 train_loss:4.5869 train_time:17284ms step_avg:160.04ms
step:119/1530 train_loss:4.4581 train_time:17448ms step_avg:160.07ms
step:120/1530 train_loss:4.3426 train_time:17610ms step_avg:160.10ms
step:121/1530 train_loss:4.2962 train_time:17774ms step_avg:160.13ms
step:122/1530 train_loss:4.4407 train_time:17938ms step_avg:160.16ms
step:123/1530 train_loss:4.2685 train_time:18101ms step_avg:160.19ms
step:124/1530 train_loss:4.5808 train_time:18266ms step_avg:160.22ms
step:125/1530 train_loss:4.4628 train_time:18429ms step_avg:160.25ms
step:125/1530 val_loss:4.4028 train_time:18476ms step_avg:160.66ms
step:126/1530 train_loss:4.4073 train_time:18596ms step_avg:160.31ms
step:127/1530 train_loss:4.4337 train_time:18762ms step_avg:160.36ms
step:128/1530 train_loss:4.3847 train_time:18926ms step_avg:160.39ms
step:129/1530 train_loss:4.6815 train_time:19089ms step_avg:160.41ms
step:130/1530 train_loss:4.3736 train_time:19253ms step_avg:160.44ms
step:131/1530 train_loss:4.4115 train_time:19418ms step_avg:160.48ms
step:132/1530 train_loss:4.3466 train_time:19582ms step_avg:160.51ms
step:133/1530 train_loss:4.4368 train_time:19745ms step_avg:160.53ms
step:134/1530 train_loss:4.2535 train_time:19908ms step_avg:160.55ms
step:135/1530 train_loss:4.4373 train_time:20072ms step_avg:160.57ms
step:136/1530 train_loss:4.2150 train_time:20235ms step_avg:160.60ms
step:137/1530 train_loss:4.3713 train_time:20399ms step_avg:160.62ms
step:138/1530 train_loss:4.2810 train_time:20562ms step_avg:160.64ms
step:139/1530 train_loss:4.3697 train_time:20725ms step_avg:160.66ms
step:140/1530 train_loss:4.4697 train_time:20890ms step_avg:160.69ms
step:141/1530 train_loss:4.3035 train_time:21055ms step_avg:160.72ms
step:142/1530 train_loss:4.2912 train_time:21219ms step_avg:160.75ms
step:143/1530 train_loss:4.2548 train_time:21382ms step_avg:160.77ms
step:144/1530 train_loss:4.3452 train_time:21546ms step_avg:160.79ms
step:145/1530 train_loss:4.3050 train_time:21708ms step_avg:160.80ms
step:146/1530 train_loss:4.1678 train_time:21873ms step_avg:160.83ms
step:147/1530 train_loss:4.3199 train_time:22037ms step_avg:160.86ms
step:148/1530 train_loss:4.3505 train_time:22200ms step_avg:160.87ms
step:149/1530 train_loss:4.2953 train_time:22364ms step_avg:160.89ms
step:150/1530 train_loss:4.4376 train_time:22528ms step_avg:160.91ms
step:151/1530 train_loss:4.2671 train_time:22691ms step_avg:160.93ms
step:152/1530 train_loss:4.2845 train_time:22855ms step_avg:160.95ms
step:153/1530 train_loss:4.3788 train_time:23019ms step_avg:160.97ms
step:154/1530 train_loss:4.3562 train_time:23182ms step_avg:160.99ms
step:155/1530 train_loss:4.2652 train_time:23346ms step_avg:161.01ms
step:156/1530 train_loss:4.3434 train_time:23509ms step_avg:161.02ms
step:157/1530 train_loss:4.3906 train_time:23672ms step_avg:161.03ms
step:158/1530 train_loss:4.2435 train_time:23838ms step_avg:161.07ms
step:159/1530 train_loss:4.3036 train_time:24002ms step_avg:161.09ms
step:160/1530 train_loss:4.1236 train_time:24165ms step_avg:161.10ms
step:161/1530 train_loss:4.3393 train_time:24329ms step_avg:161.12ms
step:162/1530 train_loss:4.3516 train_time:24493ms step_avg:161.14ms
step:163/1530 train_loss:4.3340 train_time:24657ms step_avg:161.16ms
step:164/1530 train_loss:4.1823 train_time:24821ms step_avg:161.17ms
step:165/1530 train_loss:4.2778 train_time:24984ms step_avg:161.19ms
step:166/1530 train_loss:4.3369 train_time:25148ms step_avg:161.21ms
step:167/1530 train_loss:4.2028 train_time:25313ms step_avg:161.23ms
step:168/1530 train_loss:4.2827 train_time:25477ms step_avg:161.25ms
step:169/1530 train_loss:4.1532 train_time:25641ms step_avg:161.26ms
step:170/1530 train_loss:4.0153 train_time:25804ms step_avg:161.28ms
step:171/1530 train_loss:4.1929 train_time:25966ms step_avg:161.28ms
step:172/1530 train_loss:4.1969 train_time:26129ms step_avg:161.29ms
step:173/1530 train_loss:4.2599 train_time:26292ms step_avg:161.30ms
step:174/1530 train_loss:4.4128 train_time:26454ms step_avg:161.31ms
step:175/1530 train_loss:4.2450 train_time:26618ms step_avg:161.32ms
step:176/1530 train_loss:4.0984 train_time:26780ms step_avg:161.33ms
step:177/1530 train_loss:4.0695 train_time:26943ms step_avg:161.34ms
step:178/1530 train_loss:4.1814 train_time:27106ms step_avg:161.34ms
step:179/1530 train_loss:4.1305 train_time:27268ms step_avg:161.35ms
step:180/1530 train_loss:4.1144 train_time:27432ms step_avg:161.36ms
step:181/1530 train_loss:4.2939 train_time:27595ms step_avg:161.37ms
step:182/1530 train_loss:4.1417 train_time:27758ms step_avg:161.39ms
step:183/1530 train_loss:4.1104 train_time:27921ms step_avg:161.39ms
step:184/1530 train_loss:4.1196 train_time:28084ms step_avg:161.40ms
step:185/1530 train_loss:4.2085 train_time:28248ms step_avg:161.41ms
step:186/1530 train_loss:4.1662 train_time:28410ms step_avg:161.42ms
step:187/1530 train_loss:4.2255 train_time:28573ms step_avg:161.43ms
step:188/1530 train_loss:4.1578 train_time:28876ms step_avg:162.23ms
step:189/1530 train_loss:4.0972 train_time:29206ms step_avg:163.16ms
step:190/1530 train_loss:4.2031 train_time:29368ms step_avg:163.16ms
step:191/1530 train_loss:4.0736 train_time:29531ms step_avg:163.16ms
step:192/1530 train_loss:4.0274 train_time:29693ms step_avg:163.15ms
step:193/1530 train_loss:4.2413 train_time:29857ms step_avg:163.15ms
step:194/1530 train_loss:4.1677 train_time:30020ms step_avg:163.15ms
step:195/1530 train_loss:4.3484 train_time:30183ms step_avg:163.15ms
step:196/1530 train_loss:4.1724 train_time:30346ms step_avg:163.15ms
step:197/1530 train_loss:4.0388 train_time:30509ms step_avg:163.15ms
step:198/1530 train_loss:4.1727 train_time:30671ms step_avg:163.14ms
step:199/1530 train_loss:4.0364 train_time:30835ms step_avg:163.15ms
step:200/1530 train_loss:4.1144 train_time:30999ms step_avg:163.15ms
step:201/1530 train_loss:4.0018 train_time:31161ms step_avg:163.15ms
step:202/1530 train_loss:4.2490 train_time:31324ms step_avg:163.15ms
step:203/1530 train_loss:4.0605 train_time:31488ms step_avg:163.15ms
step:204/1530 train_loss:4.1769 train_time:31650ms step_avg:163.14ms
step:205/1530 train_loss:4.2314 train_time:31813ms step_avg:163.14ms
step:206/1530 train_loss:3.9479 train_time:31976ms step_avg:163.14ms
step:207/1530 train_loss:4.0851 train_time:32140ms step_avg:163.14ms
step:208/1530 train_loss:4.0943 train_time:32302ms step_avg:163.14ms
step:209/1530 train_loss:4.2262 train_time:32466ms step_avg:163.14ms
step:210/1530 train_loss:4.1748 train_time:32628ms step_avg:163.14ms
step:211/1530 train_loss:4.0580 train_time:32792ms step_avg:163.14ms
step:212/1530 train_loss:4.1015 train_time:32956ms step_avg:163.15ms
step:213/1530 train_loss:4.0419 train_time:33120ms step_avg:163.15ms
step:214/1530 train_loss:4.1051 train_time:33283ms step_avg:163.15ms
step:215/1530 train_loss:3.9482 train_time:33446ms step_avg:163.15ms
step:216/1530 train_loss:3.9979 train_time:33608ms step_avg:163.15ms
step:217/1530 train_loss:4.0081 train_time:33772ms step_avg:163.15ms
step:218/1530 train_loss:4.0764 train_time:33936ms step_avg:163.15ms
step:219/1530 train_loss:4.0616 train_time:34098ms step_avg:163.15ms
step:220/1530 train_loss:4.0759 train_time:34261ms step_avg:163.15ms
step:221/1530 train_loss:4.0885 train_time:34425ms step_avg:163.15ms
step:222/1530 train_loss:3.9938 train_time:34587ms step_avg:163.15ms
step:223/1530 train_loss:3.9811 train_time:34751ms step_avg:163.15ms
step:224/1530 train_loss:4.2952 train_time:34914ms step_avg:163.15ms
step:225/1530 train_loss:3.9155 train_time:35077ms step_avg:163.15ms
step:226/1530 train_loss:3.9849 train_time:35241ms step_avg:163.15ms
step:227/1530 train_loss:3.9658 train_time:35403ms step_avg:163.15ms
step:228/1530 train_loss:4.1448 train_time:35567ms step_avg:163.15ms
step:229/1530 train_loss:3.9191 train_time:35735ms step_avg:163.18ms
step:230/1530 train_loss:4.0433 train_time:35901ms step_avg:163.19ms
step:231/1530 train_loss:3.9032 train_time:36067ms step_avg:163.20ms
step:232/1530 train_loss:3.9617 train_time:36234ms step_avg:163.21ms
step:233/1530 train_loss:4.0812 train_time:36400ms step_avg:163.23ms
step:234/1530 train_loss:4.0242 train_time:36565ms step_avg:163.24ms
step:235/1530 train_loss:3.8920 train_time:36733ms step_avg:163.26ms
step:236/1530 train_loss:4.0746 train_time:36900ms step_avg:163.27ms
step:237/1530 train_loss:4.0679 train_time:37066ms step_avg:163.29ms
step:238/1530 train_loss:3.9318 train_time:37233ms step_avg:163.30ms
step:239/1530 train_loss:4.0768 train_time:37399ms step_avg:163.31ms
step:240/1530 train_loss:4.1070 train_time:37564ms step_avg:163.32ms
step:241/1530 train_loss:3.9628 train_time:37730ms step_avg:163.34ms
step:242/1530 train_loss:4.1367 train_time:37897ms step_avg:163.35ms
step:243/1530 train_loss:4.0049 train_time:38064ms step_avg:163.36ms
step:244/1530 train_loss:4.0782 train_time:38228ms step_avg:163.37ms
step:245/1530 train_loss:4.1393 train_time:38396ms step_avg:163.39ms
step:246/1530 train_loss:4.0540 train_time:38561ms step_avg:163.40ms
step:247/1530 train_loss:3.9969 train_time:38727ms step_avg:163.41ms
step:248/1530 train_loss:4.0950 train_time:38894ms step_avg:163.42ms
step:249/1530 train_loss:3.9229 train_time:39061ms step_avg:163.43ms
step:250/1530 train_loss:3.9691 train_time:39226ms step_avg:163.44ms
step:250/1530 val_loss:3.9933 train_time:39274ms step_avg:163.64ms
step:251/1530 train_loss:4.0626 train_time:39393ms step_avg:163.46ms
step:252/1530 train_loss:4.1523 train_time:39561ms step_avg:163.48ms
step:253/1530 train_loss:3.9251 train_time:39728ms step_avg:163.49ms
step:254/1530 train_loss:3.8737 train_time:39893ms step_avg:163.50ms
step:255/1530 train_loss:4.0735 train_time:40059ms step_avg:163.51ms
step:256/1530 train_loss:3.9821 train_time:40226ms step_avg:163.52ms
step:257/1530 train_loss:3.9894 train_time:40391ms step_avg:163.53ms
step:258/1530 train_loss:3.9802 train_time:40557ms step_avg:163.54ms
step:259/1530 train_loss:4.0229 train_time:40725ms step_avg:163.55ms
step:260/1530 train_loss:4.0582 train_time:40891ms step_avg:163.56ms
step:261/1530 train_loss:4.0207 train_time:41056ms step_avg:163.57ms
step:262/1530 train_loss:3.9842 train_time:41223ms step_avg:163.59ms
step:263/1530 train_loss:3.8805 train_time:41389ms step_avg:163.59ms
step:264/1530 train_loss:3.9823 train_time:41555ms step_avg:163.60ms
step:265/1530 train_loss:3.8693 train_time:41722ms step_avg:163.62ms
step:266/1530 train_loss:3.9213 train_time:41888ms step_avg:163.63ms
step:267/1530 train_loss:3.9323 train_time:42055ms step_avg:163.64ms
step:268/1530 train_loss:3.9555 train_time:42222ms step_avg:163.65ms
step:269/1530 train_loss:3.8558 train_time:42388ms step_avg:163.66ms
step:270/1530 train_loss:4.0958 train_time:42554ms step_avg:163.67ms
step:271/1530 train_loss:3.9641 train_time:42721ms step_avg:163.68ms
step:272/1530 train_loss:3.9211 train_time:42886ms step_avg:163.69ms
step:273/1530 train_loss:3.9344 train_time:43052ms step_avg:163.70ms
step:274/1530 train_loss:4.0360 train_time:43220ms step_avg:163.71ms
step:275/1530 train_loss:4.0618 train_time:43385ms step_avg:163.72ms
step:276/1530 train_loss:4.2166 train_time:43551ms step_avg:163.73ms
step:277/1530 train_loss:4.0348 train_time:43716ms step_avg:163.73ms
step:278/1530 train_loss:4.0863 train_time:43884ms step_avg:163.74ms
step:279/1530 train_loss:3.9993 train_time:44050ms step_avg:163.75ms
step:280/1530 train_loss:4.1858 train_time:44219ms step_avg:163.77ms
step:281/1530 train_loss:3.9667 train_time:44386ms step_avg:163.78ms
step:282/1530 train_loss:3.9388 train_time:44552ms step_avg:163.79ms
step:283/1530 train_loss:3.9137 train_time:44718ms step_avg:163.80ms
step:284/1530 train_loss:4.0431 train_time:44884ms step_avg:163.81ms
step:285/1530 train_loss:4.0553 train_time:45048ms step_avg:163.81ms
step:286/1530 train_loss:4.0792 train_time:45214ms step_avg:163.82ms
step:287/1530 train_loss:3.9072 train_time:45379ms step_avg:163.82ms
step:288/1530 train_loss:4.0061 train_time:45543ms step_avg:163.82ms
step:289/1530 train_loss:3.8768 train_time:45708ms step_avg:163.83ms
step:290/1530 train_loss:3.8477 train_time:45872ms step_avg:163.83ms
step:291/1530 train_loss:3.9022 train_time:46038ms step_avg:163.83ms
step:292/1530 train_loss:3.8586 train_time:46204ms step_avg:163.84ms
step:293/1530 train_loss:3.9037 train_time:46368ms step_avg:163.84ms
step:294/1530 train_loss:3.9327 train_time:46533ms step_avg:163.85ms
step:295/1530 train_loss:3.8415 train_time:46698ms step_avg:163.85ms
step:296/1530 train_loss:3.8603 train_time:46863ms step_avg:163.86ms
step:297/1530 train_loss:3.8627 train_time:47028ms step_avg:163.86ms
step:298/1530 train_loss:3.9732 train_time:47194ms step_avg:163.87ms
step:299/1530 train_loss:3.8233 train_time:47359ms step_avg:163.87ms
step:300/1530 train_loss:3.9601 train_time:47525ms step_avg:163.88ms
step:301/1530 train_loss:3.9514 train_time:47691ms step_avg:163.89ms
step:302/1530 train_loss:3.9283 train_time:47857ms step_avg:163.89ms
step:303/1530 train_loss:3.9787 train_time:48023ms step_avg:163.90ms
step:304/1530 train_loss:3.9650 train_time:48187ms step_avg:163.90ms
step:305/1530 train_loss:4.4544 train_time:48353ms step_avg:163.91ms
step:306/1530 train_loss:3.9350 train_time:48519ms step_avg:163.91ms
step:307/1530 train_loss:3.8288 train_time:48683ms step_avg:163.92ms
step:308/1530 train_loss:3.9673 train_time:48848ms step_avg:163.92ms
step:309/1530 train_loss:3.8670 train_time:49014ms step_avg:163.93ms
step:310/1530 train_loss:4.0770 train_time:49180ms step_avg:163.93ms
step:311/1530 train_loss:3.9182 train_time:49346ms step_avg:163.94ms
step:312/1530 train_loss:3.8543 train_time:49511ms step_avg:163.94ms
step:313/1530 train_loss:3.9317 train_time:49676ms step_avg:163.95ms
step:314/1530 train_loss:4.0597 train_time:49840ms step_avg:163.95ms
step:315/1530 train_loss:3.9369 train_time:50006ms step_avg:163.95ms
step:316/1530 train_loss:3.7902 train_time:50170ms step_avg:163.95ms
step:317/1530 train_loss:3.8707 train_time:50335ms step_avg:163.96ms
step:318/1530 train_loss:3.9156 train_time:50502ms step_avg:163.97ms
step:319/1530 train_loss:3.8844 train_time:50667ms step_avg:163.97ms
step:320/1530 train_loss:4.0096 train_time:50832ms step_avg:163.97ms
step:321/1530 train_loss:3.9551 train_time:50996ms step_avg:163.97ms
step:322/1530 train_loss:3.9245 train_time:51163ms step_avg:163.98ms
step:323/1530 train_loss:4.0037 train_time:51329ms step_avg:163.99ms
step:324/1530 train_loss:3.9396 train_time:51494ms step_avg:163.99ms
step:325/1530 train_loss:4.0041 train_time:51659ms step_avg:164.00ms
step:326/1530 train_loss:3.8911 train_time:51825ms step_avg:164.00ms
step:327/1530 train_loss:4.3827 train_time:51991ms step_avg:164.01ms
step:328/1530 train_loss:4.0734 train_time:52156ms step_avg:164.01ms
step:329/1530 train_loss:3.7922 train_time:52322ms step_avg:164.02ms
step:330/1530 train_loss:3.7517 train_time:52487ms step_avg:164.02ms
step:331/1530 train_loss:3.9745 train_time:52652ms step_avg:164.03ms
step:332/1530 train_loss:3.9107 train_time:52816ms step_avg:164.03ms
step:333/1530 train_loss:3.8847 train_time:52983ms step_avg:164.03ms
step:334/1530 train_loss:3.8372 train_time:53147ms step_avg:164.04ms
step:335/1530 train_loss:4.0096 train_time:53312ms step_avg:164.04ms
step:336/1530 train_loss:3.9629 train_time:53477ms step_avg:164.04ms
step:337/1530 train_loss:4.4157 train_time:53643ms step_avg:164.05ms
step:338/1530 train_loss:3.9334 train_time:53808ms step_avg:164.05ms
step:339/1530 train_loss:3.8588 train_time:53972ms step_avg:164.05ms
step:340/1530 train_loss:3.9331 train_time:54137ms step_avg:164.05ms
step:341/1530 train_loss:3.8482 train_time:54305ms step_avg:164.06ms
step:342/1530 train_loss:3.8096 train_time:54472ms step_avg:164.07ms
step:343/1530 train_loss:3.8316 train_time:54640ms step_avg:164.09ms
step:344/1530 train_loss:3.9908 train_time:54809ms step_avg:164.10ms
step:345/1530 train_loss:3.8075 train_time:54977ms step_avg:164.11ms
step:346/1530 train_loss:3.7591 train_time:55145ms step_avg:164.12ms
step:347/1530 train_loss:3.7902 train_time:55314ms step_avg:164.14ms
step:348/1530 train_loss:3.8551 train_time:55481ms step_avg:164.15ms
step:349/1530 train_loss:3.8290 train_time:55650ms step_avg:164.16ms
step:350/1530 train_loss:3.5605 train_time:55819ms step_avg:164.17ms
step:351/1530 train_loss:3.8261 train_time:55988ms step_avg:164.19ms
step:352/1530 train_loss:4.1768 train_time:56156ms step_avg:164.20ms
step:353/1530 train_loss:3.6522 train_time:56324ms step_avg:164.21ms
step:354/1530 train_loss:3.9245 train_time:56492ms step_avg:164.22ms
step:355/1530 train_loss:3.7818 train_time:56662ms step_avg:164.24ms
step:356/1530 train_loss:3.8813 train_time:56830ms step_avg:164.25ms
step:357/1530 train_loss:3.7481 train_time:56998ms step_avg:164.26ms
step:358/1530 train_loss:3.8559 train_time:57165ms step_avg:164.27ms
step:359/1530 train_loss:3.7529 train_time:57334ms step_avg:164.28ms
step:360/1530 train_loss:3.4211 train_time:57504ms step_avg:164.30ms
step:361/1530 train_loss:4.0119 train_time:57672ms step_avg:164.31ms
step:362/1530 train_loss:3.9047 train_time:57840ms step_avg:164.32ms
step:363/1530 train_loss:3.8386 train_time:58008ms step_avg:164.33ms
step:364/1530 train_loss:3.7420 train_time:58176ms step_avg:164.34ms
step:365/1530 train_loss:3.9069 train_time:58344ms step_avg:164.35ms
step:366/1530 train_loss:3.8581 train_time:58513ms step_avg:164.36ms
step:367/1530 train_loss:3.8528 train_time:58681ms step_avg:164.37ms
step:368/1530 train_loss:3.8472 train_time:58848ms step_avg:164.38ms
step:369/1530 train_loss:3.7444 train_time:59017ms step_avg:164.39ms
step:370/1530 train_loss:3.8805 train_time:59183ms step_avg:164.40ms
step:371/1530 train_loss:3.7234 train_time:59351ms step_avg:164.41ms
step:372/1530 train_loss:3.6933 train_time:59520ms step_avg:164.42ms
step:373/1530 train_loss:3.9115 train_time:59687ms step_avg:164.43ms
step:374/1530 train_loss:3.8259 train_time:59855ms step_avg:164.44ms
step:375/1530 train_loss:3.7945 train_time:60025ms step_avg:164.45ms
step:375/1530 val_loss:3.8186 train_time:60074ms step_avg:164.59ms