Skip to content

Commit 228832d

Browse files
committed
Fixed issue where icons weren't rendering. Added missing links to source code for extensions.
1 parent a821e9d commit 228832d

10 files changed

+118
-8
lines changed

courses/#materials_science.md#

+20
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
# **Materials Science**
2+
3+
A small selection of course material inspired by the Mathematica notebooks used in the EPFL course [MSE-101(a) “Materials: from chemistry to properties”](https://edu.epfl.ch/coursebook/en/materials-from-chemistry-to-properties-MSE-101-A), focusing on essential concepts on the structure of materials in connection with the mechanical, thermal, electrical, magnetic and optical properties of materials. Currently, the available jupyter notebooks cover the following topics: Lennard-Jones potential, Miller indices and cubic crystal structures. They are intended as a demonstrator of the capabilities of the OSSCAR and jupyter technology, as a starting point to add more content.
4+
5+
6+
## 1.
7+
8+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/quantum-mechanics/develop?urlpath=%2Fvoila%2Frender%2Fnotebook%2Fquantum-mechanics%2F1quantumwell.ipynb)
9+
[![Materials Cloud Tool osscar-qmcourse](https://raw.githubusercontent.com/materialscloud-org/mcloud-badge/main/badges/img/mcloud_badge_tools.svg)](https://osscar-quantum-mechanics.matcloud.xyz/voila/render/quantum-mechanics/1quantumwell.ipynb)
10+
11+
This notebook solves numerically the quantum-mechanical problem of a single
12+
rectangular one-dimensional quantum well, and displays interactively the
13+
eigenfunctions (plotted at the height of the corresponding eigenvalues).
14+
15+
```{image} ./images/1quantum_well.png
16+
:alt: one quantum well
17+
:class: bg-primary mb-1
18+
:width: 500px
19+
:align: center
20+
```

courses/#quantum_mechanics.md#

+85
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,85 @@
1+
# **Quantum Mechanics**
2+
3+
Quantum mechanics is one of the pillars of modern physics and chemistry. A large amount of the work carried out in computational physics and chemistry is concerned with the implementation of computer algorithms to perform quantum mechanical calculations with the goal of simulating molecular and material systems.
4+
5+
Here, we present a collection of web applications which demonstrate fundamental
6+
concepts underpinning quantum theory. Focus has been given to numerical methods employed in the solution of the time independent and dependent Schrödinger equation for systems in the presence of simple potentials.
7+
8+
## 1. [Numerical Solution of the Schrödinger Equation for a 1D Quantum Well](https://github.com/osscar-org/quantum-mechanics/blob/develop/notebook/quantum-mechanics/1quantumwell.ipynb)
9+
10+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/quantum-mechanics/develop?urlpath=%2Fvoila%2Frender%2Fnotebook%2Fquantum-mechanics%2F1quantumwell.ipynb)
11+
[![Materials Cloud Tool osscar-qmcourse](https://raw.githubusercontent.com/materialscloud-org/mcloud-badge/main/badges/img/mcloud_badge_tools.svg)](https://osscar-quantum-mechanics.matcloud.xyz/voila/render/quantum-mechanics/1quantumwell.ipynb)
12+
13+
This notebook solves numerically the quantum-mechanical problem of a single
14+
rectangular one-dimensional quantum well, and displays interactively the
15+
eigenfunctions (plotted at the height of the corresponding eigenvalues).
16+
17+
```{image} ./images/1quantum_well.png
18+
:alt: one quantum well
19+
:class: bg-primary mb-1
20+
:width: 500px
21+
:align: center
22+
```
23+
24+
## 2. [Numerical Solution of the Schrödinger Equation for the Double Square Well Potential](https://github.com/osscar-org/quantum-mechanics/blob/develop/notebook/quantum-mechanics/2quantumwells.ipynb)
25+
26+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/quantum-mechanics/develop?urlpath=%2Fvoila%2Frender%2Fnotebook%2Fquantum-mechanics%2F2quantumwells.ipynb)
27+
[![Materials Cloud Tool osscar-qmcourse](https://raw.githubusercontent.com/materialscloud-org/mcloud-badge/main/badges/img/mcloud_badge_tools.svg)](https://osscar-quantum-mechanics.matcloud.xyz/voila/render/quantum-mechanics/2quantumwells.ipynb)
28+
29+
This notebook displays interactively the eigenfunctions for the double square well
30+
potential (DSWP) in one dimension, as obtained from the numerical solution of the associated time-independent Schrödinger equation. The
31+
double square well potential model is a simple but efficient way to describe
32+
real molecular or material systems.
33+
34+
```{image} ./images/2quantum_wells.png
35+
:alt: double quantum wells
36+
:class: bg-primary mb-1
37+
:width: 500px
38+
:align: center
39+
```
40+
41+
## 3. [Avoided Crossing in One Dimensional Asymmetric Quantum Well](https://github.com/osscar-org/quantum-mechanics/blob/develop/notebook/quantum-mechanics/asymmetricwell.ipynb)
42+
43+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/quantum-mechanics/develop?urlpath=%2Fvoila%2Frender%2Fnotebook%2Fquantum-mechanics%2Fasymmetricwell.ipynb)
44+
[![Materials Cloud Tool osscar-qmcourse](https://raw.githubusercontent.com/materialscloud-org/mcloud-badge/main/badges/img/mcloud_badge_tools.svg)](https://osscar-quantum-mechanics.matcloud.xyz/voila/render/quantum-mechanics/asymmetricwell.ipynb)
45+
46+
We demonstrate the phenomenon of avoided crossing by solving the Shrödinger
47+
equation of a one-dimensional asymmetric quantum well.
48+
49+
```{image} ./images/avoided_crossing.png
50+
:alt: avoid crossing
51+
:class: bg-primary mb-1
52+
:width: 500px
53+
:align: center
54+
```
55+
56+
## 4. [Shooting Method with Numerov Algorithm to Solve the Time Independent Schrödinger Equation for 1D Quantum Well](https://github.com/osscar-org/quantum-mechanics/blob/develop/notebook/quantum-mechancis/shooting_method.ipynb)
57+
58+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/quantum-mechanics/develop?urlpath=%2Fvoila%2Frender%2Fnotebook%2Fquantum-mechanics%2Fshooting_method.ipynb)
59+
[![Materials Cloud Tool osscar-qmcourse](https://raw.githubusercontent.com/materialscloud-org/mcloud-badge/main/badges/img/mcloud_badge_tools.svg)](https://osscar-quantum-mechanics.matcloud.xyz/voila/render/quantum-mechanics/shooting_method.ipynb)
60+
61+
The main goal of this notebook is to demonstrate the shooting method with the
62+
Numerov algorithm to search for the eigenfunctions and eigenvalues of a 1D quantum
63+
well.
64+
65+
```{image} ./images/shooting_method.png
66+
:alt: shooting method
67+
:class: bg-primary mb-1
68+
:width: 500px
69+
:align: center
70+
```
71+
72+
## 5. [Numerical Solution of 1D Time Dependent Schrödinger Equation by Split Operator Fourier Transform (SOFT) Method](https://github.com/osscar-org/quantum-mechanics/blob/develop/notebook/quantum-mechanics/soft.ipynb)
73+
74+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/quantum-mechanics/develop?urlpath=%2Fvoila%2Frender%2Fnotebook%2Fquantum-mechanics%2Fsoft_intro.ipynb)
75+
[![Materials Cloud Tool osscar-qmcourse](https://raw.githubusercontent.com/materialscloud-org/mcloud-badge/main/badges/img/mcloud_badge_tools.svg)](https://osscar-quantum-mechanics.matcloud.xyz/voila/render/quantum-mechanics/soft_intro.ipynb)
76+
77+
The split-operator Fourier transform (SOFT) method is presented and applied to solve the one-dimensional time-dependent Schrödinger equation with various
78+
potentials.
79+
80+
```{image} ./images/soft.png
81+
:alt: soft
82+
:class: bg-primary mb-1
83+
:width: 500px
84+
:align: center
85+
```

courses/materials_science.md

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
# **Materials Science**
2+
3+
A small selection of course material inspired by the Mathematica notebooks used in the EPFL course [MSE-101(a) “Materials: from chemistry to properties”](https://edu.epfl.ch/coursebook/en/materials-from-chemistry-to-properties-MSE-101-A), focusing on essential concepts on the structure of materials in connection with the mechanical, thermal, electrical, magnetic and optical properties of materials. Currently, the available jupyter notebooks cover the following topics: Lennard-Jones potential, Miller indices and cubic crystal structures. They are intended as a demonstrator of the capabilities of the OSSCAR and jupyter technology, as a starting point to add more content.

extensions/index.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ We have developed JupyterLab extensions to help with development and education.
88
:body: bg-light text-center
99
:footer: bg-light border-0
1010

11-
:fa:`tools,mr-1` **Extension to Run and Hide Codes**
11+
:opticon:`plus-circle,mr-1` **Extension to Run and Hide Codes**
1212

1313
A JupyterLab extension to run and hide all codecells.
1414

@@ -23,7 +23,7 @@ We have developed JupyterLab extensions to help with development and education.
2323

2424
----------------------------------------------
2525

26-
:fa:`tools,mr-1` **Extension to Visualize Molecular Orbitals**
26+
:opticon:`plus-circle,mr-1` **Extension to Visualize Molecular Orbitals**
2727

2828
A JupyterLab launcher extension to visualize Gaussian cube files.
2929

extensions/jupyterlab_hide_code.md

+2
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,7 @@
11
# `jupyterlab-hide-code`: A JupyterLab Extension to Run and Hide Source Code
22

3+
**Source code:** https://github.com/osscar-org/widget-code-input
4+
35
This extension adds a button in JupyterLab which enables one to run the code cells of a notebook and have them subsequently be hidden from view.
46
This JupyterLab extension was inspired by the
57
[`jlab-hide-code`](https://github.com/AixViPMaP/jlab-hide-code) JupyterLab

extensions/mol_visualizer.md

+2
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,7 @@
11
# `Molecular orbital visualizer`: JupyterLab Extension to Visualize Molecular Orbitals and Structure
22

3+
**Source code:** https://github.com/osscar-org/jupyterlab-mol-visualizer
4+
35
## Try it with Binder
46

57
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/osscar-org/jupyterlab-mol-visualizer/master?urlpath=lab)

index.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ widely through the `CECAM`_ network and beyond.
5353

5454
----------------------------------------------
5555

56-
:fa:`file-code,mr-1` **OSSCAR Source Code**
56+
:opticon:`mark-github,mr-1` **OSSCAR Source Code**
5757

5858
Check out all (open-source!) code developed by OSSCAR (courses, widgets, ...).
5959

tutorial/index.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ extensions to help in the development process. More information on these tools c
2525

2626
----------------------------------------------
2727

28-
:fa:`tools,mr-1` **OSSCAR Tools**
28+
:opticon:`tools,mr-1` **OSSCAR Tools**
2929

3030
Jupyter widgets and JupyterLab extensions.
3131

tutorial/tools.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ developed JupyterLab extensions, which can help development.
2424

2525
----------------------------------------------
2626

27-
:fa:`tools,mr-1` **Extensions**
27+
:opticon:`plus-circle,mr-1` **Extensions**
2828

2929
JupyterLab extensions
3030

widgets/index.rst

+1-3
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,7 @@ Jupyter Widgets
55
We developed Jupyter widgets related to computational chemistry
66
and physics.
77

8-
.. panels::
9-
8+
.. panels::
109
:fa:`atom,mr-1` **Widget Periodic Table**
1110

1211
A Jupyter widget for an interactive periodic table.
@@ -21,7 +20,6 @@ and physics.
2120
:classes: btn-outline-primary btn-block stretched-link
2221

2322
----------------------------------------------
24-
2523
:fa:`atom,mr-1` **Widget DOS and Bandstructure Plot**
2624

2725
A Jupyter widget to plot bandstructures and density of states.

0 commit comments

Comments
 (0)