Skip to content

Commit 09bfbb3

Browse files
committed
Manually labeled equations in lattice vibration theory notebooks.
1 parent 30f905a commit 09bfbb3

File tree

2 files changed

+19
-25
lines changed

2 files changed

+19
-25
lines changed

notebook/lattice-vibration/theory/theory_molecular_vibration.ipynb

+8-11
Original file line numberDiff line numberDiff line change
@@ -34,10 +34,10 @@
3434
}
3535
],
3636
"source": [
37-
"%%javascript\n",
38-
"MathJax.Hub.Config({\n",
39-
" TeX: { equationNumbers: { autoNumber: \"AMS\" } }\n",
40-
"});"
37+
"# %%javascript\n",
38+
"# MathJax.Hub.Config({\n",
39+
"# TeX: { equationNumbers: { autoNumber: \"AMS\" } }\n",
40+
"# });"
4141
]
4242
},
4343
{
@@ -48,8 +48,7 @@
4848
"\n",
4949
"The Newton's equation of motion may be written in the Lagrangian formalism as :\n",
5050
"\\begin{equation}\n",
51-
" \\frac{d}{dt}\\frac{\\partial\\mathcal{L}}{\\partial \\dot{q_j}}-\\frac{\\partial \\mathcal{L}}{\\partial q_k}=0\n",
52-
" \\label{eq:Lagrangian}\n",
51+
" \\frac{d}{dt}\\frac{\\partial\\mathcal{L}}{\\partial \\dot{q_j}}-\\frac{\\partial \\mathcal{L}}{\\partial q_k}=0 \\qquad (1)\n",
5352
"\\end{equation}\n",
5453
"where\n",
5554
"\\begin{equation}\n",
@@ -64,17 +63,15 @@
6463
"<br>\n",
6564
"In mass-weighted coordinates, such as $q_{1}=\\sqrt{M_{1}} \\Delta x_{1}$, $q_{2}=\\sqrt{M_{1}} \\Delta y_{1}, q_{3}=\\sqrt{M_{1}} \\Delta z_{1}, q_{4}=\\sqrt{M_{2}} \\Delta x_{2}$, etc., the kinetic energy operator becomes simpler since the mass factors are now absorbed :\n",
6665
"\\begin{equation}\n",
67-
" K=\\frac{1}{2} \\sum_{i=1}^{3 N} \\dot{q}_{i}^{2}\n",
68-
" \\label{eq:kinetic}\n",
66+
" K=\\frac{1}{2} \\sum_{i=1}^{3 N} \\dot{q}_{i}^{2} \\qquad (2)\n",
6967
"\\end{equation}\n",
7068
"The potential energy ca be expended as:\n",
7169
"\\begin{equation}\n",
72-
" V=V_{0}+\\sum_{i=1}^{3 N}\\left(\\frac{\\partial V}{\\partial q_{i}}\\right)_{0} q_{i}+\\frac{1}{2} \\sum_{i=1}^{3 N}\\left(\\frac{\\partial^{2} V}{\\partial q_{i} \\partial q_{j}}\\right)_{0} q_{i} q_{j}+\\cdots\n",
73-
" \\label{eq:potential}\n",
70+
" V=V_{0}+\\sum_{i=1}^{3 N}\\left(\\frac{\\partial V}{\\partial q_{i}}\\right)_{0} q_{i}+\\frac{1}{2} \\sum_{i=1}^{3 N}\\left(\\frac{\\partial^{2} V}{\\partial q_{i} \\partial q_{j}}\\right)_{0} q_{i} q_{j}+\\cdots \\qquad (3)\n",
7471
"\\end{equation}\n",
7572
"At equilibrium $\\left.\\frac{\\partial V}{\\partial q_i}\\right|_{0}=0$. Since $V_0$ is arbitrary, it can be set to 0. For further readability, $\\left(\\partial^{2} V / \\partial q_{i} \\partial q_{j}\\right)_{0}$ will be abbreviated as $f_{i j}$. $f_{i j}$ can be interpreted as the force acting on atom $j$ from a small displacement of atom $i$.\n",
7673
"<br>\n",
77-
"Eq. \\eqref{eq:kinetic} and Eq. \\eqref{eq:potential} are then inserted into Eq. \\eqref{eq:Lagrangian} :\n",
74+
"Eq.2 and Eq.3 are then inserted into Eq.1 :\n",
7875
"\\begin{equation}\n",
7976
" \\frac{d}{d t} \\frac{\\partial T}{\\partial \\dot{q}_{j}}+\\frac{\\partial V}{\\partial q_{j}}=0 \\quad j=1,2, \\cdots, 3 N\n",
8077
"\\end{equation}\n",

notebook/lattice-vibration/theory/theory_phonon_1d.ipynb

+11-14
Original file line numberDiff line numberDiff line change
@@ -43,25 +43,22 @@
4343
"\n",
4444
"Let's now consider the case of a 1D monoatomic chain in which only the first neighbours interactions are considered. Let $R_n=na$ be the position of atom $n$, $R_{n+1}=(n+1)a$ the position of atom $n+1$, etc., as shown in Fig. 1. The classical equation of motion of the $n$-th atom of mass $M$ in position $R_n+u_n(t)$ under the force $F_n$ is:\n",
4545
"\\begin{equation}\n",
46-
" M\\ddot u_n = -C_1(u_{n-1}-u_{n})-C_1(u_{n+1}-u_n)=-C_1(2u_n-u_{n-1}-u_{n+1})\n",
47-
" \\label{eq:1d_eq}\n",
46+
" M\\ddot u_n = -C_1(u_{n-1}-u_{n})-C_1(u_{n+1}-u_n)=-C_1(2u_n-u_{n-1}-u_{n+1}) \\qquad (1)\n",
4847
"\\end{equation}\n",
4948
"where $n-1$ and $n+1$ are the two neighbouring atoms and $C_1$ the force constant between neighbours.<br>\n",
5049
"Solutions of the differential equation are in the form of traveling wave, periodic in space and time, of the type :\n",
5150
"\\begin{equation}\n",
52-
" u_n(t)=Ae^{i(k\\cdot R_n-\\omega t)}\n",
53-
" \\label{eq:u_1d}\n",
51+
" u_n(t)=Ae^{i(k\\cdot R_n-\\omega t)} \\qquad (2)\n",
5452
"\\end{equation}\n",
5553
"where $A$ is the amplitude of the displacement, $k$ is the phonon wave vector and $\\omega$ its frequency.<br>\n",
56-
"Plugging Eq.\\ref{eq:u_1d} into Eq.\\eqref{eq:1d_eq} results in\n",
54+
"Plugging Eq.2 into Eq.1results in\n",
5755
"$$\n",
5856
"\\begin{align}\n",
5957
" -M \\omega^2 \\cancel{e^{ikn}}\\cancel{e^{-i\\omega t}} & =-C_1(2\\cancel{e^{ikn}}\\cancel{e^{-i\\omega t}}-\\cancel{e^{ikn}}\\cancel{e^{-i\\omega t}}e^{-ika}-\\cancel{e^{ikn}}\\cancel{e^{-i\\omega t}}e^{ika})\\nonumber \\\\\n",
60-
" M \\omega^2 & =-C_1(2-e^{-ika}-e^{ika}).\n",
61-
" \\label{eq:1d_final}\n",
58+
" M \\omega^2 & =-C_1(2-e^{-ika}-e^{ika}) \\qquad (3)\n",
6259
"\\end{align}\n",
6360
"$$\n",
64-
"Eq. \\eqref{eq:1d_final} gives us a direct relation between $\\omega$ and $k$, which is called the dispersion relation."
61+
"Eq.3 gives us a direct relation between $\\omega$ and $k$, which is called the dispersion relation."
6562
]
6663
},
6764
{
@@ -99,16 +96,16 @@
9996
"source": [
10097
"## **1D diatomic chain**\n",
10198
"Let us now consider the case in which two atoms site in the unit cell, with mass $M_1$ and $M_2$. The positions are given by $R_n^{(1)}=na$ and $R_n^{(2)}=na+\\frac{1}{2}a$. $u$ is the displacement of atom 1 and $v$ is the displacement of atom 2. The system of equations is then\n",
99+
"\n",
102100
"\\begin{align}\n",
103-
" M_1\\ddot u_n & =-C_1(2u_n-v_{n-1}-v_{n+1})\\label{eq:1} \\\\\n",
104-
" M_2\\ddot v_n & =-C_1(2v_n-u_{n-1}-u_{n+1})\\label{eq:2}\n",
101+
" M_1\\ddot u_n & =-C_1(2u_n-v_{n-1}-v_{n+1}) \\qquad (4) \\\\\n",
102+
" M_2\\ddot v_n & =-C_1(2v_n-u_{n-1}-u_{n+1})\\qquad (5)\n",
105103
"\\end{align}\n",
106-
"The solution of such system is given by\n",
104+
"The solution of such a system is given by\n",
107105
"\\begin{equation}\n",
108-
" u_n(t)=A_1e^{i(k\\cdot R_n^{(1)}-\\omega t)}\\qquad \\text{and}\\qquad v_n(t)=A_2e^{i(k\\cdot R_n^{(2)}-\\omega t)}\n",
109-
" \\label{eq:3}\n",
106+
" u_n(t)=A_1e^{i(k\\cdot R_n^{(1)}-\\omega t)}\\qquad \\text{and}\\qquad v_n(t)=A_2e^{i(k\\cdot R_n^{(2)}-\\omega t)} \\qquad(6)\n",
110107
"\\end{equation}\n",
111-
"Replacing Eq.\\eqref{eq:3} into Eq.\\eqref{eq:1} and Eq.\\eqref{eq:2} gives :\n",
108+
"Inserting Eq.6 into Eq.4 and Eq.5 gives :\n",
112109
"\\begin{align}\n",
113110
" & -M_{1} \\omega^{2} A_{1}=-C\\left(2 A_{1}-A_{2} e^{-i k a / 2}-A_{2} e^{i k a / 2}\\right) \\\\\n",
114111
" & -M_{2} \\omega^{2} A_{2}=-C\\left(2 A_{2}-A_{1} e^{-i k a / 2}-A_{1} e^{i k a / 2}\\right)\n",

0 commit comments

Comments
 (0)