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Preface to the First Reprinting

Well, what a year it's been! Interest ibearn Prolog Now!continues
to grow. College Publications brought out the first papekbadition
in June 2006, and since then the number of hits on the website
(www.learnprolognow.org) has increased steadily. The most dramatic
month was May 2007 when we had 6,322 unique visitors; a reader
submitted the LPN! link to Reddithftp://programming.reddit.com)
and for a heady moment we felt a bit like Smosh!

We've also been pleased by the emails we continue to get from
students and instructors using the material. Some pointtypds, others
tell us of their experiences in teaching or learning with theok, and a
pleasing number simply want to say “Thank you!”. All in alt, was fast
becoming clear that it was about time for a first (correctegfrinting.

But what really made us get down to work was the sudden appeara
of a French translation. Hélene Manuélian, who begansteding LPN!
shortly after its appearance in paperback, finished eattiien anticipated
— s0 suddenly we hadProlog Tout de Suite !on our hands too! This
inspired us all to get down to the task of correcting and imjrg the
English version.

So, here it is again, all squeaky clean. Once again, if yoa like
website, we hope you like the (new!) paperback even more. , fadd
usual, we wish you every success in your endeavours to Leeastod?
Now!

Acknowledgments

Once again we’re in debt to many people: everyone who gave us
feedback on the first printing and the website, and (as ewer}he
indefatigable Jane Spurr. However this time we owe a pdatilyu
deep debt to Sébastien Hinderer, Eric Kow, Matthieu Quignand (of
course) Hélene Manuélian. Their work dProlog Tout de Suite,!not
only created a beautiful translation, it also helped us vilie present
volume. Warmest thanks to all.
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Preface

Learn Prolog Now!has a long and twisted history. In 1995, all three
authors were based at the Department of Computational [stigs, at
the University of the Saarland, in Saarbriicken, Germamyhad, who
was teaching the introduction to Prolog that year, was waykivith
Patrick on a Prolog-based introduction to natural languagmantics.
He decided to prepare a short set of lecture notes on Prologhwh
could also be used as an Appendix to the computational sésamok.

Nice idea, but that's not the way things worked out. Firstiween
1996 and 2000, Patrick and Johan rethought the structurdeofProlog
courses, and along the way the notes became book-sized., Tiwen
2001 till 2004, Kristina took over the teaching, added newtemal and
(most importantly of all) turned_earn Prolog Now!into a web-book.

It quickly became apparent that we had a hit on our hands: the
website got up to 4,000 visitors a month, and we received mangils.
Actually, this put us in a bit of a quandary. We wanted to p&bli
Learn Prolog Now!as a (low-budget) book — but at the same time we
did not want a publisher telling us that we had to get rid of the free
online version.

Luckily, Vincent Hendricks came to the rescue (thanks Viibe He
told us about College Publications, Dov Gabbay’s new palibn house,
which was specifically designed to enable authors to retajyright. It
was a marriage made in heaven. Thanks to College Publisatios
could makelLearn Prolog Now! available in book form at a reasonable
price, and keep the web-book in place.

And that's the book youre now reading. It has been thoroughl
tested, first on nearly a decade’s worth of students at Sazkén, and at
the 16th European Summer School in Logic, Language and Infoomat
which took place in Nancy, France, in August 2004, where tifrds
taught a hands-on introduction to Prolog. Though, as we hape will
swiftly discover, youdont need to be doing a course to follow this
book. We've tried to makeLearn Prolog Now! self-contained and easy

1Representation and Inference for Natural Language: A FiBsturse in Computational
Semantics Patrick Blackburn and Johan Bos, CSLI Publications, 2005.
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to follow, so that it can be used without a teacher. And as tedlback
we have received confirms, this is one of the most popular wafys
using it.

So — over to you. We had a lot of fun writing this. We hope you
have a lot of fun reading it, and that it really will help you tearn
Prolog now!

Acknowledgments

Over the years thatearn Prolog Now! existed as course notes and
web-book, we received many emails, ranging from helpful c@nts to
requests for answers to problems (a handful of which vergedlemands
that we do their homework assignments!). We can’t thank yewes by
name, but we did receive a lot of useful feedback this way amdvary
grateful. And if we did any homework assignments, we ainlling. ..

We are extremely grateful to Gertjan van Noord and RobbeitisPr
who used early versions dfearn Prolog Now!in their teaching at the
University of Groningen. They gave us detailed feedback tsnweak
points, and we've tried to take their advice into account; hope we've
succeeded. We'd also like to sarazie! to Malvina Nissim, who
supplied us with an upgrade of Exercise 2.4, helped format fihal
hardcopy version, and generally gave us her enthusiastipost over
many years.

Some special thanks are in order. First, we'd like to thankv Do
Gabbay for founding College Publications; may it do for amadt
publishing what the GNU Public License did for software! &ed,
heartfelt thanks to Jane Spurr, we'veever had a more helpful,
competent, or enthusiastic editor, amibbody reacts faster than Jane.
Thirdly, we like to thank Jan Wielemaker (the Linus Torvald$é the
Prolog world) for making SWI Prolog freely available overetlinternet.
SWI Prolog is a an ISO-compliant Free Software Prolog emrirent,
licensed under the Lesser GNU Public License. We don’t knohatw
we’d have done without it. We're also very grateful to him fidre
speedy and informative feedback he gave us on a number ohitath
issues, and for encouraging us to go for 1ISO-standard Prdtatglly, a
big thank you to lan Mackie and an anonymous referee for all time
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Patrick Blackburn
Johan Bos
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Introduction

First off, what is Prolog? It's a programming language, butather
unusual one. “Prolog” is short for “Programming with Logi&nd though
the link between logic and Prolog is not completely streightard, it is
this link that gives Prolog its special character. At the rhes Prolog
lies a beautiful idea: don't tell the computer what to do, @iyndescribe
situations of interest. Where does the computation come Witten we
ask questions. Prolog enables the computer to logicallyjucedew facts
about the situations we describe, and gives its deductiatk o us as
answers.

This has a number of consequences. First, a practical ongoufare
an experienced programmer, Prolog is likely to take you brprse. It
requires a different mindset. You have to learn to see coatioual
problems from a different perspective. To use the standarshihology,
you have to learn to thinldeclaratively rather thanprocedurally This
can be challenging, but it's also a lot of fun.

A second consequence of Prolog’s “say what the problsmrather
than how to solve it” stance is that Prolog is a very highddaaguage.
As will become apparent, Prolog enables you to describe shigkly
abstract things (for example, the syntactic structure oflish) extremely
succinctly. Moreover, these descriptions really are paog:: they will
do real work for us if we ask the right questions. For exampilaying
described the syntactic structure of English, we can asko&rwhether
particular sentences are grammatical or not. Prolog will us, and if
we ask the right question, will even give us a grammaticallysis

Prolog’s ability to describe complex situations succiyatieans that it
is good for rapid prototyping. That is, if you have a good idead
want to get a working program that embodies it, Prolog is rofen
excellent choice. Ideas become computational reality f&@#t Prolog, at
least for some applications. Which applications? Thoseckwhiepend
on getting to grips with rich structure. Prolog applicatiareas include
computational linguistics (or natural languages procegsas it is often
called), Artificial Intelligence (Al), expert systems, necllar biology,
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and the semantic web. Where there is structure to be dedcribe
knowledge to be represented, Prolog is likely to come insooivn.

Prolog is not a perfect language, and it's not suitable foerghing.
If you need to do serious text manipulation, go for Perl. Ifuyneed
tight control over memory, go for C. If you want a mathemadtica
elegant language that you can reason about easily, go foi, Géeskell,
or a clean Lisp dialect (such as Scheme). But no language asl dar
everything, and those that try (remember Ada?) often fallth®y wayside.
As we have just said, Prolog is a natural choice for knowletigfe
tasks, and there are a number of good reasons for learninglfit.
you are an experienced programmer, we think you will enjogrrang
Prolog simply because it is so different; thinking declaely, or almost
declaratively, can send your brain in interesting new dioes. And if
you have little or no programing experience, and maybe areuén
sure if you like computers or not, then there are excellemsaas for
choosing Prolog as your first language. Because it is so leigl; you
get to do interesting things fast, without getting boggedvion tedious
preparatory work. Moreover, you will swiftly learn about aimber of
fundamental programming concepts, notably recursion audirsive data
structures, concepts that will be useful if you later studlyeo languages.
Finally, the link with logic adds an intriguing intellectua@imension to
the learning process.

Where does Prolog come from? It originated in Marseilles, the
south of France. Alain Colmerauer and Philippe Roussel sgelviand
implemented the first Prolog interpreter in 1972. One of tlaliest
versions was patrtially implemented in Fortran, and paytiah Prolog
itself. An interesting mixture: it would be hard to find twonuages
that differ more widely than the numerically oriented, newursive,
imperative scientific programming language Fortran, arel gimbolically
oriented, recursive, declarative Prolog. A few years Jat&obert
Kowalski, who had worked with the Marseilles team in 1971 d@¥2,
published his bookLogic for Problem Solving which put the idea of
logic programming firmly on the intellectual agenda. Anotli®#g step
was taken in Edinburgh in 1977 with David Warren's implenagionh of
the DEC 10 compilet. This implementation, which could compete with
(and sometimes surpass) state of the art Lisp implementatio terms
of efficiency, turned Prolog from an academic curiosity irdoserious
programming language. Interesting work soon followed. Eaample,

Logic for Problem Solving R. Kowalski, Elsevier/North-Holland, 1979.
’David H. D. Warren, Applied Logic — Its Use and Implementaton as a
Programming Toql PhD thesis, University of Edinburgh. Scotland, 1977.
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in a classic paper, Pereira and Warren showed that Prologil-ilp
mechanism for handling Definite Clause Grammars (DCGs) waataral
way of treating certain tasks in natural language procgssin

Since then, Prolog has grown in popularity, particularlyBaorope and
Japan (in the United States, work on Al has tended to be Lismd).
Prolog is, was, and always will be, a niche language. But tlohenit
occupies is fascinating.

How to get the most out of this book

What we have said about Prolog so far has been high-level bsttaat.
We are now going to change gears. The approach taken to mgachi
Prolog in this book isnot abstract, and is certainlynot driven by
high-level ideas (such as the link with logic). In fact, ittesolutely
down to earth. We try to teach Prolog as concretely as passive’ve
just told you why Prolog is not just another programming laage, but
we’re going to teach it as if it was.

Why? Quite simply, because we think that's the best apprdach
a first course. Programming in Prolog is a practical skill. efeh are
concrete things that simply have to be learned, and we dirdoejieve
that you just have to get in there and learn them as fast asibpmss
This does not mean that we find the abstract side of Prolog (aack
generally, logic programming) unimportant or unintenegti However
(unless you already have a good theoretical backgroundgettoeeper
ideas take time to emerge clearly and be absorbed. In the timegn
you should be getting on with mastering the nuts and bolts.

To put it another way, we think that learning a programmingglaage
(any programming language, not just Prolog) is a lot likeresy a
foreign language. And what is the most important part of leay a
foreign language? Actuallysing it, actually putting it to work, actually
trying it out. Sure, reflecting on the beauty of the languagepleasant,
but at the end of the day, what really counts is the time yowndpen
mastering the mechanics.

This attitude has strongly influenced the wagarn Prolog Now! is
written. In particular, as you will see, each chapter is did into three
parts. First comes the text. Next come a number of exercisasally
there is what we call the practical session. Now, we cannophasise
the following point too strongly: the practical sessions are the most
important part of the boak It is utterly imperative that you sit down,

3“Definite clause grammars for language analysis — a surveythef formalism and
a comparison with augmented transition networks”, F. Par@nd D. H. D. Warren,
Journal of Artificial Intelligence 13(3):231-278, 1980.
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fire up a Prolog interpreter, and work through these sessidwsually,
just doing that is nowhere near enough. If you really want tastar
Prolog, you need to try out a lot more than is asked of you irsghe
sessions. But we believe these sessions contain enoughttyopuon
the right track.

Gaining practical experience with a programming languagealivays
important, but, in our opinion, it is even more importantrthasual with
Prolog. Why? Because Prolog is deceptively easy to undetstit’s a
small language (there are not a lot of constructs to learn) the basic
ideas are beautiful in their simplicity. It is dangerouslgsg to smile,
relax, and say “Hey! | get it!". Easy, but wrong. The basice&d
interact in subtle ways, and witholts of practical experience you will
be lost. We have had many (very bright) students who thoubhy t
understood it, didn’t put in the effort on the practical side and who
later found themselves scrambling to keep up. Prolog islesubYou
need to put in the hours if you want to master it.

Summing up,Learn Prolog Nowis a practically oriented introduction
to the central features of Prolog. It won't teach you evengh but if
you make it to the end you’ll have a good grasp of the basicd, waitl
have caught a glimpse of what logic programming is about.o¥n;



Chapter 1

Facts, Rules, and Queries

4 N

This chapter has two main goals:

1. To give some simple examples of Prolog
programs. This will introduce us to the three
basic constructs in Prolog: facts, rules, and
queries. It will also introduce us to a number
of other themes, like the role of logic in
Prolog, and the idea of performing unification
with the aid of variables.

2. To begin the systematic study of Prolog by
defining terms, atoms, variables and other
syntactic concepts.

\ )
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1 Some Simple Examples

There are only three basic constructs in Prolog: facts,srued queries.
A collection of facts and rules is called a knowledge basea(atatabase)
and Prolog programming is all about writing knowledge basekhat
is, Prolog programs simplyare knowledge bases, collections of facts
and rules which describe some collection of relationshipst twe find
interesting.

So how do weusea Prolog program? By posing queries. That is, by
asking questions about the information stored in the kndgdebase.

Now this probably sounds rather strange. It's certainly olotious that
it has much to do with programming at all. After all, isn't gramming
all about telling a computer what to do? But as we shall see, th
Prolog way of programming makes a lot of sense, at least foraice
tasks; for example, it is useful in computational lingustiand Atrtificial
Intelligence (Al). But instead of saying more about Prolog deneral
terms, let's jump right in and start writing some simple kiedge bases;
this is not just the best way of learning Prolog, it's the omay.

Knowledge Base 1

Knowledge Base 1 (KB1) is simply a collection of facts. Faate used
to state things that aranconditionallytrue of some situation of interest.
For example, we can state that Mia, Jody, and Yolanda are wpme
that Jody plays air guitar, and that a party is taking placging the
following five facts:

woman (mia) .

woman (jody) .

woman (yolanda) .
playsAirGuitar (jody) .
party.

This collection of facts is KB1. It is our first example of a R
program. Note that the namesia, jody, and yolanda, the properties
woman and playsAirGuitar, and the propositionparty have been
written so that the first letter is in lower-case. This is impat; we
will see why a little later on.

How can we use KB1? By posing queries. That is, by asking
guestions about the information KB1 contains. Here are semamples.
We can ask Prolog whether Mia is a woman by posing the query:

?7- woman(mia).

Prolog will answer
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yes

for the obvious reason that this is one of the facts expjigidcorded in
KB1. Incidentally, we don't type in the?-. This symbol (or something
like it, depending on the implementation of Prolog you aringisis the
prompt symbol that the Prolog interpreter displays whensitwaiting
to evaluate a query. We just type in the actual query (for etam
woman (mia)) followed by . (a full stop). The full stop is important. If
you don't type it, Prolog won't start working on the query.

Similarly, we can ask whether Jody plays air guitar by posthg
following query:

?7- playsAirGuitar (jody) .

Prolog will again answer yes, because this is one of the fact&kB1.
However, suppose we ask whether Mia plays air guitar:

?7- playsAirGuitar(mia).
We will get the answer
no

Why? Well, first of all, this is not a fact in KB1. Moreover, KBis
extremely simple, and contains no other information (sushttee rules
we will learn about shortly) which might help Prolog try tofen (that
is, deduce) whether Mia plays air guitar. So Prolog coryectincludes
that playsAirGuitar(mia) doesnot follow from KBL1.

Here are two important examples. First, suppose we pose ubey:q

?7- playsAirGuitar(vincent).

Again Prolog answers no. Why? Well, this query is about a qers
(Vincent) that it has no information about, so it (corregtboncludes that
playsAirGuitar (vincent) cannot be deduced from the information in
KB1.

Similarly, suppose we pose the query:

?7- tatooed(jody) .

Again Prolog will answer no. Why? Well, this query is about a
property (being tatooed) that it has no information aboot,osce again

it (correctly) concludes that the query cannot be deducexn frthe
information in KB1. (Actually, some Prolog implementatfowill respond
to this query with an error message, telling you that the ipegd or
proceduretatooed is not defined; we will soon introduce the notion of
predicates.)
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Needless to say, we can also make queries concerning ptiopgsi
For example, if we pose the query

7- party.

then Prolog will respond
yes

and if we pose the query
?- rockConcert.

then Prolog will respond
no

exactly as we would expect.

Knowledge Base 2
Here is KB2, our second knowledge base:

happy(yolanda) .

listens2Music(mia) .

listens2Music(yolanda) : - happy(yolanda) .
playsAirGuitar(mia):- listens2Music(mia).
playsAirGuitar(yolanda) : - listens2Music(yolanda) .

There are two facts in KB2listens2Music(mia) andhappy(yolanda).
The last three items it contains are rules.

Rules state information that isonditionally true of the situation of
interest. For example, the first rule says that Yolandarsteo music
if she is happy, and the last rule says that Yolanda plays atargifi
she listens to music. More generally, the should be read as “if”, or
“is implied by”. The part on the left hand side of the- is called the
head of the rule, the part on the right hand side is called they.bSo
in general rules sayif the body of the rule is truethen the head of
the rule is true too. And now for the key point:

If a knowledge base contains a rulkead :- body, and
Prolog knows thatbody follows from the information in the
knowledge base, then Prolog can infeead.

This fundamental deduction step is called modus ponens.
Let's consider an example. Suppose we ask whether Mia plays a
guitar:
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?7- playsAirGuitar(mia).

Prolog will respond yes. Why? Well, although it can't find
playsAirGuitar(mia) as a fact explicitly recorded in KB2, it can find
the rule

playsAirGuitar(mia):- listens2Music(mia).

Moreover, KB2 also contains the fatistens2Music(mia). Hence Prolog
can use the rule of modus ponens to deduce phatysAirGuitar (mia).

Our next example shows that Prolog can chain together usesodfis
ponens. Suppose we ask:

?7- playsAirGuitar(yolanda).

Prolog would respond yes. Why? Well, first of all, by using tfaet
happy(yolanda) and the rule

listens2Music(yolanda) : - happy(yolanda) .

Prolog can deduce the new fattistens2Music(yolanda). This new
fact is not explicitly recorded in the knowledge base — it islyo
implicitly present (it isinferred knowledge). Nonetheless, Prolog can
then use it just like an explicitly recorded fact. In partay from this
inferred fact and the rule

playsAirGuitar(yolanda):- listens2Music(yolanda).

it can deduceplaysAirGuitar(yolanda), which is what we asked it.
Summing up: any fact produced by an application of modus p®rean
be used as input to further rules. By chaining together apfitins of
modus ponens in this way, Prolog is able to retrieve infoiomatthat
logically follows from the rules and facts recorded in theowktedge
base.

The facts and rules contained in a knowledge base are cdbdedes.
Thus KB2 contains five clauses, namely three rules and twds.fac
Another way of looking at KB2 is to say that it consists of #re
predicates (or procedures). The three predicates are:

listens2Music

happy
playsAirGuitar

The happy predicate is defined using a single clause (a fact). The
listens2Music and playsAirGuitar predicates are each defined using
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two clauses (in one case, two rules, and in the other caseruideeand
one fact). It is a good idea to think about Prolog programseims of
the predicates they contain. In essence, the predicateshareoncepts
we find important, and the various clauses we write down coicg
them are our attempts to pin down what they mean and how they ar
inter-related.

One final remark. We can view a fact as a rule with an empty body.
That is, we can think of facts as conditionals that do not hawy
antecedent conditions, or degenerate rules.

Knowledge Base 3
KB3, our third knowledge base, consists of five clauses:

happy(vincent) .
listens2Music(butch).
playsAirGuitar (vincent) : -
listens2Music(vincent),
happy(vincent) .
playsAirGuitar (butch) :-
happy (butch) .
playsAirGuitar (butch):-
listens2Music(butch).

There are two factshappy (vincent) and listens2Music(butch), and
three rules.

KB3 defines the same three predicates as KB2 (nantelppy,
listens2Music, and playsAirGuitar) but it defines them differently.
In particular, the three rules that define theaysAirGuitar predicate
introduce some new ideas. First, note that the rule

playsAirGuitar(vincent):-
listens2Music(vincent),
happy(vincent) .

hastwo items in its body, or (to use the standard terminology) twalgo
So, what exactly does this rule mean? The most importangttennote
is the comma, that separates the goalistens2Music(vincent) and
the goal happy(vincent) in the rule’s body. This is the way logical
conjunction is expressed in Prolog (that is, the comma mearty. So
this rule says: “Vincent plays air guitar if he listens to rieuand he is

happy”.
Thus, if we posed the query

?- playsAirGuitar(vincent).
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Prolog would answer no. This is because while KB3 contains
happy(vincent), it does not explicity contain the information
listens2Music(vincent), and this fact cannot be deduced either. So
KB3 only fulfils one of the two preconditions needed to esthbl
playsAirGuitar(vincent), and our query fails

Incidentally, the spacing used in this rule is irrelevanbr example,
we could have written it as

playsAirGuitar(vincent) :- happy(vincent),
listens2Music(vincent) .

and it would have meant exactly the same thing. Prolog oftexysa lot
of freedom in the way we set out knowledge bases, and we cam tak
advantage of this to keep our code readable.

Next, note that KB3 contains two rules withxactly the same head,
namely:

playsAirGuitar(butch):-
happy (butch) .

playsAirGuitar (butch):-
listens2Music(butch).

This is a way of stating that Butch plays air guitaeither if he listens
to music, or if he is happy. That is, listing multiple rules with the same
head is a way of expressing logical disjunction (that is,sitai way of
saying or). So if we posed the query

7- playsAirGuitar (butch).

Prolog would answer yes. For although the first of these rulds not
help (KB3 does not allow Prolog to conclude thatppy (butch)), KB3
does contain 1istens2Music(butch) and this means Prolog can apply
modus ponens using the rule

playsAirGuitar (butch):-
listens2Music(butch).

to conclude thatplaysAirGuitar (butch).
There is another way of expressing disjunction in Prolog. ¥deild
replace the pair of rules given above by the single rule

playsAirGuitar (butch):-
happy (butch) ;
listens2Music(butch).
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That is, the semicolon is the Prolog symbol foor, so this single rule
means exactly the same thing as the previous pair of rulest better
to use multiple rules or the semicolon? That depends. On tiee hand,
extensive use of semicolon can make Prolog code hard to ®adthe
other hand, the semicolon is more efficient as Prolog only toasleal
with one rule.

It should now be clear that Prolog has something to do withiclog
after all, the :- means implication, the means conjunction, and thg
means disjunction. (What about negation? That is a wholeroghory.
We'll be discussing it in Chapter 10.) Moreover, we have séeat a
standard logical proof rule (modus ponens) plays an importale in
Prolog programming. So we are already beginning to undsistahy
“Prolog” is short for “Programming with logic”.

Knowledge Base 4
Here is KB4, our fourth knowledge base:

woman (mia) .
woman (jody) .
woman (yolanda) .

loves(vincent,mia).
loves(marsellus,mia).

loves (pumpkin,honey_bunny) .
loves (honey_bunny,pumpkin) .

Now, this is a pretty boring knowledge base. There are nosyubaly
a collection of facts. Ok, we are seeing a relation that has hames
as arguments for the first time (namely theves relation), but, let's
face it, that's a rather predictable idea.

No, the novelty this time lies not in the knowledge base, ésliin
the queries we are going to pose. In particufar, the first time we’re
going to make use of variableddere’'s an example:

7- woman (X) .

The X is a variable (in fact, any word beginning with an upper-case
letter is a Prolog variable, which is why we had to be carefuluse
lower-case initial letters in our earlier examples). Now aiable isn't a
name, rather it's golaceholderfor information. That is, this query asks
Prolog: tell me which of the individuals you know about is anaan.
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Prolog answers this query by working its way through KB4 ,nfreop
to bottom, trying to unify (or match) the expressi@oman(X) with the
information KB4 contains. Now the first item in the knowledbase is
woman(mia). So, Prolog unifiesX with mia, thus making the query
agree perfectly with this first item. (Incidentally, thexed lot of different
terminology for this process: we can also say that Prologai@tesX
to mia, or that it bindsX to mia.) Prolog then reports back to us as
follows:

X = mia

That is, it not only says that there is information about asteone
woman in KB4, it actually tells us who she is. It didn't justysges, it
actually gave us the variable binding (or variable instgtitn) that led
to success.

But that's not the end of the story. The whole point of varbis
that they can stand for, or unify with, different things. Arbere is
information about other women in the knowledge base. We ess
this information by typing a semicolon:

X = mia ;

Remember that; means or, so this query means:are there any
alternative® So Prolog begins working through the knowledge base
again (it remembers where it got up to last time and starte ftbere)
and sees that if it unifieX with jody, then the query agrees perfectly
with the second entry in the knowledge base. So it responds:

X = mia ;
X = jody
It's telling us that there is information about a second wonia KB4,

and (once again) it actually gives us the value that led tocess And
of course, if we press a second time, Prolog returns the answer

X = mia ;
X = jody ;
X = yolanda

But what happens if we press a third time? Prolog responds no.
No other unifications are possible. There are no other faetgirsy with
the symbolwoman. The last four entries in the knowledge base concern
the love relation, and there is no way that such entries can be unified
with a query of the formwoman (X).

Let's try a more complicated query, namely
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?- loves(marsellus,X), woman(X).

Now, remember that, meansand so this query says:is there any
individual X such that Marsellus love& and X is a womar? If you
look at the knowledge base you'll see that there is: Mia is anawo
(fact 1) and Marsellus loves Mia (fact 5). And in fact, Prolsgcapable
of working this out. That is, it can search through the knalgke base
and work out that if it unifiesx with Mia, then both conjuncts of the
query are satisfied (we’ll learn in the following chapter h&solog does
this). So Prolog returns the answer

X = mia

The business of unifying variables with information in theokwledge
base is the heart of Prolog. As we’ll learn, there are mangrésting
ideas in Prolog — but when you get right down to it, it's Prdtogbility
to perform unification and return the values of the variabiedings to
us that is crucial.

Knowledge Base 5

Well, we've introduced variables, but so far we've only useem in
gueries. But variables not onlyan be used in knowledge bases, it's only
when we start to do so that we can write truly interesting paots.
Here's a simple example, the knowledge base KB5:

loves(vincent,mia).
loves(marsellus,mia).

loves (pumpkin,honey_bunny) .
loves (honey_bunny,pumpkin) .

jealous(X,Y):- loves(X,Z), loves(Y,Z).

KB5 contains four facts about théoves relation and one rule.
(Incidentally, the blank line between the facts and the rbls no
meaning: it's simply there to increase the readability. Ag waid
earlier, Prolog gives us a great deal of freedom in the way omnét
knowledge bases.) But this rule is by far the most intergstime we
have seen so far: it contains three variables (note that, and Z are
all upper-case letters). What does it say?

In effect, it is defining a concept of jealousy. It says thatidividual
X will be jealous of an individuak if there is some individuak that X
loves, andY loves that same individuak too. (Ok, so jealousy isn't
as straightforward as this in the real world.) The key thilgnte is
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that this is ageneral statement: it is not stated in terms afia, or
pumpkin, Or anyone in particular — it's a conditional statement &bou
everybodyin our little world.

Suppose we pose the query:

?7- jealous(marsellus,W).

This query asks: can you find an individudl such that Marsellus is
jealous ofwW? Vincent is such an individual. If you check the definition
of jealousy, you'll see that Marsellus must be jealous ofcéint, because
they both love the same woman, namely Mia. So Prolog will rretihe
value

W = vincent

Now some questions foyou First, are there any other jealous people
in KB5? Furthermore, suppose we wanted Prolog to tell us tladiu
the jealous people: what query would we pose? Do any of theverss
surprise you? Do any seem silly?

2 Prolog Syntax

Now that we've got some idea of what Prolog does, it's time tobgck
to the beginning and work through the details more carefuligt's start
by asking a very basic question: we've seen all kinds of esgioms (for
example jody, playsAirGuitar(mia), and X) in our Prolog programs,
but these have just been examples. It's time for precisiom@ctty what
are facts, rules, and queries built out of?

The answer is terms, and there are four kinds of term in Prolog
atoms, numbers, variables, and complex terms (or strugtugoms and
numbers are lumped together under the heading constardscarstants
and variables together make up the simple terms of Prolog.

Let's take a closer look. To make things crystal clear, ldi'st be
precise about the basic characters (that is, symbols) atdisposal. The
upper-case letterare A, B,... Z; the lower-case lettersare a, b,... z; the
digits are 0, 1, 2,...9. In addition we have the symbol, which is
called underscore, and sonspecial characterswhich include characters
such as+, -, *, /, <, > =, :, ., & ~. The blank spaceis also
a character, but a rather unusual one, being invisible. Mgstis an
unbroken sequence of characters.

Atoms
An atom is either:
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1. A string of characters made up of upper-case letters, rloase

letters, digits, and the underscore character, that begithhsa lower-
case letter. Here are some examplestch, big_kahuna_burger,
listens2Music and playsAirGuitar.

. An arbitrary sequence of characters enclosed in singletegu

For example Vincent', 'The Gimp', 'Five_Dollar_Shake/
"&%&#e$ &+, and ' . The sequence of characters between the
single quotes is called the atom name. Note that we are allowe
to use spaces in such atoms; in fact, a common reason for using

single quotes is so we can do precisely that.

3. A string of special characters. Here are some exampdesand
====> and ; and :- are all atoms. As we have seen, some
these atoms, such as and :- have a pre-defined meaning.

Numbers

Real numbers aren’t particularly important in typical Pglapplications.
So although most Prolog implementations do support floatpaint
numbers or floats (that is, representations of real numberh sas
1657.3087 orr) we say little about them in this book.

But integers (that is: ...,-2, -1, 0, 1, 2, 3,...) are usefot Such
tasks as counting the elements of a list, and we’'ll discusw ho
manipulate them in Chapter 5. Their Prolog syntax is the alwione:
23, 1001, 0, -365, and so on.

Variables

A variable is a string of upper-case letters, lower-caseelgt digits
and underscore characters that stagither with an upper-case letteor
with an underscore. For exampl®, Y, Variable, _tag, X_526, List,
List24, _head, Tail, _input and Output are all Prolog variables.

of

The variable_ (that is, a single underscore character) is rather special.

It's called theanonymous variableand we discuss it in Chapter 4.

Complex terms

Constants, numbers, and variables are the building blocks: we need
to know how to fit them together to make complex terms. Redadit t
complex terms are often called structures.

Complex terms are build out of a functor followed by a seqeen€
arguments. The arguments are put in ordinary parentheepsrated by
commas, and placed after the functor. Note that the functw to be
directly followed by the parenthesis; you can’t have a spbe®veen the
functor and the parenthesis enclosing the arguments. Thetdiumust
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be an atom. That is, variablesnnotbe used as functors. On the other
hand, arguments can be any kind of term.

Now, we've already seen lots of examples of complex terms
when we looked at the knowledge bases KB1 to KBS5. For
example, playsAirGuitar(jody) is a complex term: its functor is
playsAirGuitar and its argument isjody. Other examples are
loves(vincent,mia) and, to give an example containing a variable,
jealous(marsellus,W).

But the definition allows for more complex terms than this. In
fact, it allows us to keep nesting complex terms inside cemperms
indefinitely (that is, it is allows recursive structure). rFexample

hide (X, father (father (father (butch))))

is a perfectly acceptable complex term. Its functor Hsde, and

it has two arguments: the variabl&, and the complex term
father (father (father(butch))). This complex term hagather as

its functor, and another complex term, namébther (father (butch)),

as its sole argument. And the argument of this complex teramety
father (butch), is also complex. But then the nesting bottoms out, for
the argument here is the constanttch.

As we shall see, such nested (or recursively structuredhsteznable
us to represent many problems naturally. In fact the inégrpgbetween
recursive term structure and variable unification is thers®uof much
of Prolog’s power.

The number of arguments that a complex term has is called its
arity. For example,woman(mia) is a complex term of arity 1, and
loves(vincent,mia) iS a complex term of arity 2.

Arity is important to Prolog. Prolog would be quite happy fos to
define two predicates with the same functor but with a difieneumber
of arguments. For example, we are free to define a knowledge ba
that defines a two-place predical®ve (this might contain such facts
as love(vincent,mia)), and also a three-plackove predicate (which
might contain such facts akove(vincent,marsellus,mia)). However,
if we did this, Prolog would treat the two-pladgeve and the three-place
love as different predicates. Later in the book (for example, whe
introduce accumulators in Chapter 5) we shall see that it maruseful
to define two predicates with the same functor but differenity.a

When we need to talk about predicates and how we intend to use
them (for example, in documentation) it is usual to use a suffi
followed by a number to indicate the predicate’s arity. Ttune to KB2,
instead of saying that it defines predicates
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listens2Music

happy
playsAirGuitar

we should really say that it defines predicates

listens2Music/1
happy/1
playsAirGuitar/1

And Prolog can’'t get confused about a knowledge base cadntpithe
two different love predicates, for it regards theve/2 predicate and the
love/3 predicate as distinct.

3 Exercises

Exercise 1.1. Which of the following sequences of characters are
atoms, which are variables, and which are neither?

. VINCENT
. Footmassage
. variable23

. Variable2000

1

2

3

4

5. big_kahuna_burger
6. ’big kahuna burger’
7. big kahuna burger
8. ’Jules’

9

. _Jules

10. ’_Jules’

Exercise 1.2. Which of the following sequences of characters are
atoms, which are variables, which are complex terms, anctiwhre not
terms at all? Give the functor and arity of each complex term.

1. loves(Vincent ,mia)

2. ’loves(Vincent,mia)’
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. Butch(boxer)
. boxer (Butch)

. and(big(burger) ,kahuna(burger))

3

4

5

6. and(big(X) ,kahuna(X))
7. _and(big(X) ,kahuna(X))
8. (Butch kills Vincent)
9. kills(Butch Vincent)

10. kills (Butch,Vincent

Exercise 1.3. How many facts, rules, clauses, and predicates are there
in the following knowledge base? What are the heads of thesruind
what are the goals they contain?

woman (vincent) .

woman (mia) .

man (jules) .

person(X) : - man(X); woman(X).
loves(X,Y):- father(X,Y).
father(Y,Z) :- man(Y), son(Z,Y).
father(Y,Z) :- man(Y), daughter(Z,Y).

Exercise 1.4. Represent the following in Prolog:
1. Butch is a killer.
Mia and Marsellus are married.

Zed is dead.

A wN

Marsellus kills everyone who gives Mia a footmassage.

o

Mia loves everyone who is a good dancer.

6. Jules eats anything that is nutritious or tasty.

Exercise 1.5. Suppose we are working with the following knowledge
base:
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wizard(ron) .

hasWand (harry) .

quidditchPlayer (harry) .

wizard(X) :- hasBroom(X), hasWand(X).
hasBroom(X) : - quidditchPlayer (X).

How does Prolog respond to the following queries?
1. wizard(ron).

2. witch(ron).

3. wizard(hermione) .

4. witch(hermione) .

5. wizard (harry) .

6. wizard(Y).

7. witch(Y).

4 Practical Session

Don't be fooled by the fact that the description of the preailtisessions
is shorter than the text you have just read; the practical igadefinitely
the most important. Yes, you need to read the text and do tkecises,
but that’s not enough to become a Prolog programmer. Toyrea#ster
the language you need to sit down in front of a computer ang plih

Prolog — a lot!

The goal of the first practical session is for you to becomeiliam
with the basics of how to create and run simple Prolog prograNow,
because there are many different implementations of Praad different
operating systems you can run them under, we can't be tooifispec
here. Rather, what we’ll do is describe in very general temigt is
involved in running Prolog, list the practical skills you etk to master,
and suggest some things for you to do.

The simplest way to run a Prolog program is as follows. Youehav
a file with your Prolog program in it (for example, you may haae
file kb2.pl which contains the knowledge base KB2). You then start
Prolog. Prolog will display its prompt, something like

?_
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which indicates that it is ready to accept a query.

Now, at this stage, Prolog knows absolutely nothing about2 KBr
indeed anything else). To see this, type in the commandting,
followed by a full stop, and hit return. That is, type

?- listing.

and press the return key.

Now, the listing command is a special built-in Prolog predéc that
instructs Prolog to display the contents of the current Kedge base.
But we haven't yet told Prolog about any knowledge bases,tswill
just say

yes

This is a correct answer: as yet Prolog knows nothing — so litectly
displays all this nothing and sayses. Actually, with more sophisticated
Prolog implementations you may get a little more (for exampthe
names of libraries that have been loaded; libraries areusssd in
Chapter 12) but, one way or another, you will receive whatdseatially
an “l know nothing about any knowledge bases!” answer.

So let’s tell Prolog about KB2. Assuming that you've storedXK
in the file kb2.pl, and that this file is in the directory where you're
running Prolog, all you have to type is

7- [kb2].

This tells Prolog to consult the fileb2.pl, and load the contents as its
new knowledge base. Assuming thah2.pl contains no typos, Prolog
will read it in, maybe print out a message saying that it is stdimg
this file, and then answer:

yes

Incidentally, it is common to store Prolog code in files with.al
suffix. It's an indication of what the file contains (namelyofy code)
and with some Prolog implementations you don't actually ehdaw type
in the .pl suffix when you consult a file. Nice — but there is a
drawback. Files containing Perl scripts usually have.fa suffix too,
and nowadays there are a lot of Perl scripts in use, so thisceaise
confusion. C’est la vie.

If the above doesn’t work, that is, if typing

7- [kb2].
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produces an error message saying that the ¥l does not exist, then
you probably haven't started Prolog from the directory veheb2.pl is
stored. In that case, you can either stop Prolog (by typiagt. after
the prompt), change to the directory whex®e2.pl is stored, and start
Prolog again. Or you can tell Prolog exactly where to look %®e . pl.

To do this, instead of writing onlkb2 between the square brackets, you
give Prolog the whole path enclosed in single quotes. Fomei& you
type something like

?- [’home/kris/Prolog/kb2.pl’].
or
?- [’c:/Documents and Settings/Kris/Prolog/kb2.pl’].

Ok, so Prolog should now know about all the KB2 predicates.d An
we can check whether it does by using thesting command again:

?- listing.

If you do this, Prolog will list (something like) the followg on the
screen:

listens2Music(mia).

happy (yolanda) .

playsAirGuitar (mia):-
listens2Music(mia) .

playsAirGuitar(yolanda) :-
listens2Music(yolanda).

listens2Music(yolanda) : -
happy (yolanda) .

yes

That is, it will list the facts and rules that make up KB2, armer say
yes. Once again, you may get a little more than this, such as the
locations of various libraries that have been loaded.

Incidentally, listing can be used in other ways. For example, typing

?7- listing(playsAirGuitar).

simply lists all the information in the knowledge base abadhe
playsAirGuitar predicate. So in this case Prolog will display
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playsAirGuitar(mia):-
listens2Music(mia) .

playsAirGuitar(yolanda) : -
listens2Music(yolanda) .

yes

Well — now you're ready to go. KB2 is loaded and Prolog is
running, so you can (and should!) start making exactly thet b
inquiries we discussed in the text.

But let's back up a little, and summarise a few of the prattgidlls
you will need to master to get this far:

e You will need to know some basic facts about the operatingesys
you are using, such as the directory structure it uses. Adter
you will need to know how to save the files containing programs
where you want them.

e You will need to know how to use some sort of text editor, in
order to write and modify programs. Some Prolog impleméonat
come with built-in text editors, but if you already know a tex
editor (such as Emacs) you can use this to write your Prolatg.co
Just make sure that you save your files as simple text files (for
example, if you are working under Windows, don’t save them as
Word documents).

e You may want to take example Prolog programs from the interne
So make sure you know how to use a browser to find what you
want, and to store the code where you want it.

e You need to know how to start your version of Prolog, and how
to consult files with it.

The sooner you pick up these skills, the better. With them afuthe
way (which shouldn’t take long) you can start concentratimgmastering
Prolog (which will take longer).

But assuming you have mastered these skills, what next?e @intply,
play with Prolog! Consult the various knowledge bases discussed in the
text, and check that the queries discussed really do workwhg we
said they did. In particular, take a look at KB5 and make sucel y
understand why you get those peculiar jealousy relationsy gosing
new queries. Experiment with theisting predicate (it's a useful tool).
Type in the knowledge base used in Exercise 1.5, and checkhaihe
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your answers are correct. Best of all, think of some simpleasibn that
interests you, and create a brand-new knowledge base froatclsc



Chapter 2

Unification and Proof Search

4 )

This chapter has two main goals:

1. To discuss unification in Prolog, and to explain
how Prolog unification differs from standard
unification. Along the way, we'll introduce
=/2, the built-in predicate for Prolog unifica-
tion, and unify with occurs_check/2, the
built-in predicate for standard unification.

2. To explain the search strategy Prolog uses
when it tries to deduce new information from
old using modus ponens.

\_ )
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1 Unification

When working with knowledge base KB4 in the previous chaptee
briefly mentioned the idea of unification. We said, for exampihat
Prolog unifies woman(X) with woman(mia), thereby instantiating the
variable X to mia. It's now time to take a closer look at unification, for
it is one of the most fundamental ideas in Prolog.

Recall that there are three types of term:

1. Constants. These can either be atoms (suchvascent) or
numbers (such ag4).

2. Variables. (Such ag%, z3, andList.)

3. Complex terms. These have the form:
functor(term_1,...,term_n).

We are going to work our way towards a definition of when Prolog
will unify two terms. Our starting point will be the followg working
definition. It gives the basic intuition, but is a little liglon detail:

Two terms unify if they are the same term or if they contain
variables that can be uniformly instantiated with terms urcls a
way that the resulting terms are equal.

This means, for example, that the termsa and mia unify, because
they are the same atom. Similarly, the tera® and 42 unify, because
they are the same number, the terthsand X unify, because they are
the same variable, and the termsman(mia) and woman(mia) unify,
because they are the same complex term. The teroamn(mia) and
woman (vincent), however, do not unify, as they are not the same (and
neither of them contains a variable that could be instadiaib make
them the same).

Now, what about the termaia and X? They are not the same.
However, the variableX can be instantiated tmia which makes them
equal. So, by the second part of our working definitiaia and X unify.
Similarly, the termswoman(X) and woman(mia) unify, because they can
be made equal by instantiatiryto mia. How aboutloves(vincent,X)
and loves(X,mia)? No. It is impossible to find an instantiation of
X that makes the two terms equal. Do you see why? Instantiating
X to vincent would give us the termsloves(vincent,vincent)
and loves(vincent,mia), which are obviously not equal. However,
instantiatingX to mia, would yield the termdoves(vincent,mia) and
loves(mia,mia), which aren’t equal either.
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Usually we are not only interested in the fact that two ternmifyy
we also want to know how the variables have to be instantitdethake
them equal. And Prolog gives us this information. When Ryolmifies
two terms it performs all the necessary instantiations, lst the terms
really are equal afterwards. This functionality, togetiéth the fact that
we are allowed to build complex terms (that is, recursivelsuctured
terms) makes unification a powerful programming mechanism.

The basic intuitions should now be clear. Here’s the definitivhich
makes them precise. It tells us not only which terms Prolo wiify,
but also what it will do to the variables to achieve this.

1. If terml and term2 are constants, thertermi and term2 unify
if and only if they are the same atom, or the same number.

2. If terml is a variable andterm2 is any type of term, themermi
and term2 unify, and terml is instantiated toterm2. Similarly, if
term2 is a variable andterm1 is any type of term, themermil
and term2 unify, and term?2 is instantiated toterm1. (So if they
are both variables, they're both instantiated to each otlerd we
say that they share values.)

3. If term1l and term2 are complex terms, then they unify if and
only if:

(a) They have the same functor and arity, and
(b) all their corresponding arguments unify, and

(c) the variable instantiations are compatible. (For examgtejs
not possible to instantiate variabl& to mia when unifying
one pair of arguments, and to instantiaketo vincent when
unifying another pair of argumenjs

4. Two terms unify if and only if it follows from the previous dér
clauses that they unify.

Let's have a look at the form of this definition. The first clauglls
us when two constants unify. The second clause tells us when t
terms, one of which is a variable, unify (such terms will awaunify;
variables unify withanything. Just as importantly, this clause also tells
what instantiations we have to perform to make the two terngs dame.
Finally, the third clause tells us when two complex termsfyuniNote
the structure of this definition. Its first three clauses arirperfectly the
(recursive) structure of terms.
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The fourth clause is also important: it says that the firseg¢hclauses
tell us all we need to know about the unification of two termb.two
terms can’t be shown to unify using clauses 1-3, then tthey’t unify.
For example,batman does not unify withdaughter (ink). Why not?
Well, the first term is a constant, and the second is a compdem.t
But none of the first three clauses tell us how to unify two stetms,
hence (by clause 4) they don't unify.

Examples

To make sure we've fully understood this definition, let’s rv@hrough
several examples. In these examples we’ll make use of an rtamgo
built-in predicate, the=/2 predicate (recall that writing/2 at the end
indicates that this predicate takes two arguments).

The =/2 predicate tests whether its two arguments unify. For exampl
if we pose the query

?- =(mia,mia).
Prolog will respond yes, and if we pose the query
?7- =(mia,vincent).

Prolog will respond no.

But we usually wouldn’'t pose these queries in quite this whegt's
face it, the notation=(mia,mia) is rather unnatural. It would be nicer
if we could use infix notation (that is, if we could put tke/2 functor
between its arguments) and write things like:

?- mia = mia.

In fact, Prolog lets us do this, so in the examples that follew/ll use
infix notation.
Let's return to our first example:

7- mia = mia.
yes

Why does Prolog say yes? This may seem like a silly question:
surely it's obvious that the terms unify! That's true, butwhaloes this
follow from the definition given above? It is important to teato think
systematically about unification (it is utterly fundaménia Prolog), and
thinking systematically means relating the examples to deénition of
unification given above. So let’s think this example through
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The definition has three clauses. Now, clause 2 is for when one
argument is a variable, and clause 3 is for when both argusmarg
complex terms, so these are of no use here. However clause 1
relevant to our example. This tells us that two constantdyuifi and
only if they are exactly the same object. Asa andmia are the same
atom, unification succeeds.

A similar argument explains the following responses:

-2 =2.
yes

7?- mia = vincent.
no

Once again, clause 1 is relevant here (after allmia, and vincent
are all constants). And ag is the same number ag, and asmia is
not the same atom asincent, Prolog responds yes to the first query
and no to the second.

However clause 1 does hold one small surprise for us. Congfde
following query:

7- ’mia’ = mia.
yes

What's going on here? Why do these two terms unify? Well, asafa
Prolog is concernedmia’ and mia are the same atom. In fact, for
Prolog, any atom of the form symbols’ is considered the same entity
as the atom of the formsymbols. This can be a useful feature in
certain kinds of programs, so don't forget it.

On the other hand, to the query

7- 920 = 2,

Prolog will respond no. And if you think about the definitiogs/en in
Chapter 1, you will see that this has to be the way things wdaker
all, 2 is a number, but’2’ is an atom. They simply cannot be the
same.

Let's try an example with a variable:

7- mia = X.

X = mia
yes
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Again, this in an easy example: clearly the variallecan be unified
with the constantmia, and Prolog does so, and tells us that it has made
this unification. Fine, but how does this follow from our défon?
The relevant clause here is clause 2. This tells us what mappten
at least one of the arguments is a variable. In our example ithé
second term which is the variable. The definition tells usficetion
is possible, and also says that the variable is instantistedhe first
argument, namelyia. And this, of course, is exactly what Prolog does.
Now for an important example: what happens with the follayin
query?

—-X=Y.

Well, depending on your Prolog implementation, you may jget back
the output

-X=Y.
yes

Prolog is simply agreeing that the two terms unify (after, afhriables
unify with anything, so they certainly unify with each othemd making
a note that from now onX andY denote the same object, that is, share
values.

On the other hand, you may get the following output:

X = _5071
Y = _5071
yes

What's going on here? Essentially the same thing. Note tBari is a
variable (recall from Chapter 1 that strings of letters andnbers that
start with the underscore character are variables). Nowk kipclause 2
of the definition of unification. This tells us that when tworigbles
are unified, they share values. So Prolog has created a neablear
(namely _5071) and from now on botiX and Y share the value of this
variable. In effect, Prolog is creating a common variableneafor the
two original variables. Needless to say, there’s nothinggimabout the
number5071. Prolog just needs to generate a brand new variable name,
and using numbers is a handy way to do this. It might just ad wel
generate_5075, or _6189, or whatever.

Here is another example involving only atoms and variablésw do
you think will Prolog respond?

7- X = mia, X = vincent.
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Prolog will respond no. This query involves two goalks,= mia and
X = vincent. Taken separately, Prolog would succeed at both of them,
instantiatingX to mia in the first case and twincent in the second.
And that’'s exactly the problem here: once Prolog has workedugh
the first goal,X is instantiated to (and therefore equal to)a, so that it
simply can't unify with vincent anymore. Hence the second goal fails.
An instantiated variable isn’t really a variable anymore: it has become
what it was instantiated with.

Now let's look at an example involving complex terms:

7- k(s(g),Y) = k(X,t(k)).

X = s(g
Y = t(k)
yes

Clearly the two complex terms unify if the stated variablstémtiations
are carried out. But how does this follow from the definitioV¥ell,
first of all, clause 3 has to be used here because we are trging t
unify two complex terms. So the first thing we need to do is khec
that both complex terms have the same functor and arity. Amey t
do. Clause 3 also tells us that we have to unify the correspgnd
arguments in each complex term. So do the first argumentg) and
X, unify? By clause 2, yes, and we instantiateto s(g). So do the
second arguments, and t(k), unify? Again by clause 2, yes, and we
instantiatey to t (k).

Here’s another example with complex terms:

7- k(s(g), t(k)) = k(X,t(¥)).

X = s(g)
Y=k
yes

It should be clear that the two terms unify if these instditties are
carried out. But can you explain, step by step, how this eslab the
definition?

Here is a last example:

?7- loves(X,X) = loves(marcellus,mia).

Do these terms unify? No, they don’t. It's true that they arathb
complex terms and have the same functor and arity, but cl8usdso
demands that all corresponding arguments have to unify, thatl the
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variable instantiations have to be compatible. This is no¢ tase
here. Unifying the first arguments would instantiatewith marcellus.
Unifying the second arguments would instantidtevith mia. Either way,
we’re blocked.

The occurs check

Unification is a well-known concept, used in several brascbiecomputer
science. It has been thoroughly studied, and many unificagigorithms
are known. But Prolog doesot use a standard unification algorithm
when it performs its version of unification. Instead it tak&sshortcut.
You need to know about this shortcut.

Consider the following query:

7- father(X) = X.

Do these terms unify or not? A standard unification algorithm
would say: “No, they don’t”. Why is that? Well, pick any term
and instantiateX to the term you picked. For example, if you
instantiateX to father(father(butch)), the left hand side becomes
father (father(father(butch))), and the right hand side becomes
father (father (butch)). Obviously these don’t unify. Moreover, it
makes no difference what term you instantiatéo. No matter what you
choose, the two terms cannot possibly be made the same, dotetm
on the left will always be one symbol longer than the term oa tight
(the functorfather on the left will always give it that one extra level).
A standard unification algorithm will spot this (we’ll see wishortly
when we discuss the occurs check), halt, and tell us no.

The recursive definition of Prolog unification given earl@on’'t do
this. Because the left hand term is the varialle by clause 2 it
decides that the termslo unify, and (in accordance with clause 2)
instantiatesx to the right hand side, nameljjather (X). But there’s an
X in this term, andX has been instantiated t®ather(X), so Prolog
realises thatfather (X) is really father (father(X)). But there’s anxX
here too, andX has been instantiated tbather (X), so Prolog realises
that father (father (X)) is really father(father(father(X))), and
so on. Having instantiate® to father(X), Prolog is committed to
carrying out an unending sequence of expansions.

At least, that's the theory. What happens in practice? Weith
older Prolog implementations, what we've just describedexactly what
happens. You would get a message like:

Not enough memory to complete query!

and a long string of symbols like:
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X = father(father (father(father (father(father
(father (father (father (father (father(father
(father (father (father (father (father(father
(father (father (father (father (father(father
(father (father (father (father (father(father

Prolog is desperatelyrying to come back with the correctly instantiated
terms, but it can't halt, because the instantiation prodesanbounded.
From an abstract mathematical perspective, what Prologyisgtto do is
sensible. Intuitively, the only way the two terms could bededo unify
would be if X was instantiated to a term containing an infinitely long
string of father functors, so that the effect of the extfather functor

on the left hand side was cancelled out. But the terms we ctampu
with are finite entities. Infinite terms are an interesting mathematical
abstraction, but they’re not something we can work with. Natter how
hard Prolog tries, it can never build one.

Now, it's annoying to have Prolog running out of memory likest
and sophisticated Prolog implementations have found walyscaping
more gracefully. Try posing the querfather(X) = X to SWI Prolog
or SICStus Prolog. The answer will be something like:

X = father(father (father(father(...))))))))
yes

That is, these implementations insist that unificatisrpossible, but they
don't fall into the trap of actually trying to instantiate a finiterin for
X as the naive implementations do. Instead, they detect tieetis a
potential problem, halt, declare that unification is possiland print out
a finite representation of an infinite term, like the

father (father (father (father(...))))))))

in the previous query. Can you compute with these finite mTEtions
of infinite terms? That depends on the implementation. Ines@ystems
you cannot do much with them. For example, posing the query

?- X = father(X), Y = father(Y), X =Y.

would result in a crash (note that ttie= Y demands that we unify two
finite representations of infinite terms). Nonetheless, ame modern
systems unification works robustly with such represematifor example,
both SWI and Sicstus can handle the previous example) so you c
actually use them in your programs. However, why you mighnhtwi
use such representations, and what such representatituehaare, are
topics that lie beyond the scope of this book.
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In short, there are actuallyhree different responses to the question
“does father(X) unify with X". There is the answer given by the
standard unification algorithm (which is to say no), the oesme of
older Prolog implementations (which is to run amok until ythese up
the available memory), and the answer given by sophistic&eolog
implementations (which is to say yes, and return a finite esgntation
of an infinite term). In short, there is no ‘right answer toisth
guestion. What is important is that you understand the miffee between
standard unification and Prolog unification, and know how Bmlog
implementation thatyou work with handles such examples.

Now, in the practical session at the end of the chapter we askty
try out such examples with your Prolog interpreter. Here wantwto say
a little more about the difference between Prolog unificaémd standard
unification. Given the very different ways they handle thisaraple, it
may seem that standard unification algorithms and the Pralmgroach
to unification are inherently different. Actually, they'neot. There is
one simple difference between the two algorithms that astsoéor their
different behaviour when faced with the task of unifyingner like X
and father (X). A standard algorithm, when given two terms to unify,
first carries out what is known as the occurs check. This mehat if
it is asked to unify a variable with a term, it first checks wtest the
variable occurs in the term. If it does, the standard alporitdeclares
that unification is impossible, for clearly it is the preseraf the variable
X in father(X) which leads to the problems discussed earlier. Only if
the variable does not occur in the term do standard algositlattempt
to carry out the unification.

To put it another way, standard unification algorithms psssimistic
They first carry out the occurs check, and only when they are $oat
the situation is safe they do go ahead and actually try toyulttie
terms. So a standard unification algorithm will never getkémt into a
situation where it is endlessly trying to instantiate valés, or having
to appeal to infinite terms.

Prolog, on the other hand, igptimistic It assumes that you are not
going to give it anything dangerous. So it takes a shortdubniits the
occurs check. As soon as you give it two terms, it rushes alazatl
tries to unify them. As Prolog is a programming languages tisi an
intelligent strategy. Unification is one of the fundamenpabcesses that
makes Prolog work, so it needs to be carried out as fast asibfmss
Carrying out an occurs check every time unification is called would
slow it down considerably. Pessimism is safe, but optimismai lot
faster! Prolog can only run into problems if you, the prognaen, ask it
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to do something like unifyX with father(X). And it is unlikely you
will ever (intentionally) ask it to do anything like that whewriting a
real program.

One final remark. Prolog comes with a built-in predicate tbhatries
out standard unification (that is, unification with the oscwheck). The
predicate is

unify_with_occurs_check/2.
So if we posed the query

7- unify_with_occurs_check(father(X),X).
we would get the response no.

Programming with unification

As we've said, unification is a fundamental operation in &gollt plays
a key role in Prolog proof search (as we shall soon learn), tosl
alone makes it vital. However, as you get to know Prolog betie
will become clear that unification is interesting and impattin its own
right. Indeed, sometimes you can write useful programs lgirbg using
complex terms to define interesting concepts. Unification taen be
used to pull out the information you want.

Here's a simple example of this, due to Ivan Bratkdhe following
two line knowledge base defines two predicates, namehtical/1 and
horizontal/1, which specify what it means for a line to be vertical or
horizontal respectively:

vertical(line(point(X,Y),point(X,Z))).

horizontal(line(point(X,Y),point(Z,Y))).

Now, at first glance this knowledge base may seem too simple to
be interesting: it contains just two facts, and no rules. Budit a
minute: the two facts are expressed using complex terms hwhgain
have complex terms as arguments. Indeed, there are threts le¥
terms nested inside terms. Moreover, the deepest levelremngis are all
variables, so the concepts are being defined in a general Waybe
it's not quite as simple as it seems. Let’s take a closer look.

Right down at the bottom level, we have a complex term with
functor point and two arguments. Its two arguments are intended to be
instantiated to numbergoint (X,Y) represents the Cartesian coordinates

1see his bookProlog Programing for Artificial Intelligence Addison-Wesley Publishing
Company, 1990, second edition, pages 41-43.
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of a point. That is, theX indicates the horizontal distance the point is
from some fixed point, while th& indicates the vertical distance from
that same fixed point.

Now, once we've specified two distinct points, we've spedife line,
namely the line between them. So the two complex terms reptieg
points are bundled together as the two arguments of anotbeplex
term with the functorline. In effect, we represent a line by a complex
term which has two arguments which are complex terms themseind
represent points. We're using Prolog’s ability to build quex terms to
work our way up a hierarchy of concepts.

Being vertical, and being horizontal, are properties ofesin The
predicatesvertical and horizontal therefore both take one argument
which represents a line. The definition ekrtical/1 simply says: a
line that goes between two points that have the same x-cuateliis
vertical. Note how we capture the effect of “the same x-cowmtd”
in Prolog: we simply make use of the same varialleas the first
argument of the two complex terms representing the points.

Similarly, the definition ofhorizontal/1 simply says: a line that
goes between two points that have the same y-coordinate rigohtal.
To capture the effect of “the same y-coordinate”, we use thenes
variableY as the second argument of the two complex terms representing
the points.

What can we do with this knowledge base? Let's look at some
examples:

?7- vertical(line(point(1,1),point(1,3))).
yes

This should be clear: the query unifies with the definitionvettical/1
in our little knowledge base (and in particular, the repnésitons of the
two points have the same first argument) so Prolog says yesila8y
we have:

?7- vertical(line(point(1,1),point(3,2))).
no

This query does not unify with the definition ofertical/1 (the
representations of the two points have different first argois) so Prolog
says no.

But we can also ask more general questions:

?- horizontal(line(point(1,1),point(2,Y))).
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no

Here our query is: if we want a horizontal line between a pant
(1,1), and point whose x-coordinate is 2, what should theogrdinate
of that second point be? Prolog correctly tells us that theogrdinate
should be 1. If we then ask Prolog for a second possibilittgrnibe ;)
it tells us that no other possibilities exist.

Now consider the following:

7- horizontal(line(point(2,3),P)).
P = point(_1972,3) ;

no

This query is: if we want a horizontal line between a point 2t3),
and some other point, what other points are permissible? arwmaver
is: any point whose y-coordinate is 3. Note that the972 in the first
argument of the answer is a variable, which is Prolog’'s wayteiling
us that any x-coordinate at all will do.

A general remark: the answer given to our last query, namely
point(_1972,3), is structured That is, the answer is a complex
term, representing a sophisticated concept (namely “anint pawhose
y-coordinate is 3"). This structure was built using unifioatand nothing
else: no logical inference (and in particular, no use of nsogonens)
was used to produce it. Building structure by unificationnturout to
be a powerful idea in Prolog programming, far more powerhant this
rather simple example might suggest. Moreover, when a pmgis
written that makes heavy use of unification, it is likely to brtremely
efficient. We will study a beautiful example in Chapter 7 whesm
discuss difference lists, which are used to implement Brelduilt-in
grammar system, Definite Clause Grammars.

This style of programming is particularly useful in appticas where
the important concepts have a natural hierarchical strecfas they did
in the simple knowledge base above), for we can then use e&xmpl
terms to represent this structure, and unification to acdess This
way of working plays an important role in computational lingtics, for
example, because information about language has a natigwdrdhical
structure (think of the way sentences can be analysed intm mdhrases
and verb phrases, and noun phrases analysed into detesnaindrnouns,
and so on).
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2 Proof Search

Now that we know about unification, we are in a position to heaow
Prolog actually searches a knowledge base to see if a quesatisfied.
That is, we are ready to learn about proof search. We willoghice
the basic ideas involved by working through a simple example
Suppose we are working with the following knowledge base

f(a).
f(b).

ga).
g(o).

h(b).

kX)) - £(X), g(X), h(X).
Suppose we then pose the query
7- k(Y).

It is probably clear that there is only one answer to this guaamely
k(b), but how exactly does Prolog work this out? Let’s see.

Prolog reads the knowledge base, and tries to unrify) with either
a fact, or the head of a rule. It searches the knowledge bage to
to bottom, and carries out the unification, if it can, at thestfiplace
possible. Here there is only one possibility: it must unkyyY) to the
head of the rulek(X) :- £(X), g(X), h(X).

When Prolog unifies the variable in a query to a variable in & fa
or rule, it generates a brand new variable (saB4) to represent the
shared variables. So the original query now reads:

k(_G34)
and Prolog knows that
k(_G34) :- £(_G34), g(_G34), h(_G34).

So what do we now have? The original query says: “l want to find
an individual that has propert¥”. The rule says, “an individual has
property k if it has propertiest, g, and h”. So if Prolog can find an
individual with propertiest, g, andh, it will have satisfied the original
query. So Prolog replaces the original query with the folfayyvlist of
goals:



Chapter 2: Unification and Proof Search 35

£(_G34), g(_G34), h(_G34).

Our discussion of the querying process so far can be made more
elegant and succinct if we think graphically. Consider tlalofving

diagram:
7- k(Y)

Y = _G34

7- £(.G34),g(_G34),h(G34)

Everything in a box is either a query or a goal. In particulagr
original goal was to provek(Y), thus this is shown in the top box.
When we unifiedk (Y) with the head of the rule in the knowledge base,
X Y, and the new internal variableG34 were made to share values, and
we were left with the goals (_G34),g(_G34),h(_G34), just as shown.
Now, whenever it has a list of goals, Prolog tries to satisfgm one
by one, working through the list in a left to right directiomhe leftmost
goal is £(_G34), which reads: “I want an individual with property”.
Can this goal be satisfied? Prolog tries to do so by searchingugh
the knowledge base from top to bottom. The first item it findat th
unifies with this goal is the fact(a). This satisfies the goaf (_G34)
and we are left with two more goals. Now, when we unify_G34)
to £(a), _G34 is instantiated toa, and this instantiation applies to all
occurrences of G34 in the list of goals. So the list now looks like this:

g(a),h(a)
and our graphical representation of the proof search nowsldike this:

7- k(Y)

Y = _G34

|7- £(.G34),(G34) ,n(G34) |

_G34 = a

7- g(a),h(a)

But the factg(a) is in the knowledge base, so the first goal we have
to prove is satisfied too. So the goal list becomes

h(a)
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and the graphical representation is now

7- k(Y)

X = _G34

| 7- £(_G34),g(_G34),h(_G34) |

G34 = a

7- g(a),h(a)
?7- h(a)

But there is no way to satisfyi(a), the last remaining goal. The only
information abouth we have in the knowledge base igb), and this
won't unify with h(a).

So what happens next? Well, Prolog decides it has made akmjsta
and checks whether it has missed any possible ways of ugifgirgoal
with a fact or the head of a rule in the knowledge base. It dbés ity
going back up the path shown in the graphical representatmoking
for alternatives. Now, there is nothing else in the knowkedrpse that
unifies with g(a), but thereis another way of unifyingf (_G34). Points
in the search where there are several alternative ways diyingi a
goal against the knowledge base are called choice poinwlod’keeps
track of choice points it has encountered, so that if it ma&ewsrong
choice it can retreat to the previous choice point and try etbing else
instead. This process is called backtracking, and it is &mmehtal to
proof search in Prolog.

So let's carry on with our example. Prolog backtracks to thset |
choice point. This is the point in the graphical represémtaivhere the
list of goals was:

£(_G34),g(_G34) ,h(_G34).

Prolog must now redo this work. First it must try to re-satishe first
goal by searching further in the knowledge base. It can ds: tiisees
that it can unify the first goal with information in the knowllge base
by unifying £(_G34) with £(b). This satisfies the goat(_G34) and
instantiatesX to b, so that the remaining goal list is

g(b) ,h(b).
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But g(b) is a fact in the knowledge base, so this is satisfied too,
leaving the goal list:

h(b).

Moreover, this fact too is in the knowledge base, so this geahlso
satisfied. So Prolog now has an empty list of goals. This mehat it
has now proved everything required to establish the origgwal (that
is, k(Y)). So the original queryis satisfiable, and moreover, Prolog has
also discovered what it has to do to satisfy it (namely in&émY to b).

It is interesting to consider what happens if we then ask footlzer
solution by typing:
This forces Prolog to backtrack to the last choice point, tp éand
find another possibility. However, there are no other chgicénts, as
there are no other possibilities for unifying(b), g(b), £(_G34), or
k(Y) with clauses in the knowledge base, so Prolog would respand n
On the other hand, if there had been other rules involvingProlog
would have gone off and tried to use them in exactly the way aeeh
described: that is, by searching top to bottom in the knogéetase,
left to right in goal lists, and backtracking to the previotisoice point
whenever it fails.

Let's take a look at the graphical representation of therensearch
process. Some general remarks are called for, for such semaions
are an important way of thinking about proof search in Prolog

7- k(YD

Y = _G34

|7- £(.6G34),g(.G34) ,h(G34) |

_G34 = a _G34 =D

[ s@.0@] [7 g®,00)]

7- h(a) 7- h(b)
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This diagram has the form of a tree; in fact it is our first exémpf
what is known as a search tree. The nodes of such trees sayh whic
goals have to be satisfied at the various steps of the prosthseand
the edges keep track of the variable instantiations thatnaaele when
the current goal (that is, the first one in the list of goals)uisfied to
a fact or to the head of a rule in the knowledge base. Leaf nodes
which still contain unsatisfied goals are points where Rydkiled (either
because it made a wrong decision somewhere along the pathecause
no solution exists). Leaf nodes with an empty goal list cgpond to
a possible solution. The edges along the path from the rodero a
successful leaf node tell you the variable instantiatiomst theed to be
made to satisfy the original query.

Let's have a look at another example. Suppose that we areimgork
with the following knowledge base:

loves(vincent,mia).
loves(marcellus,mia) .

jealous(A,B):- loves(A,C), loves(B,C).
Now we pose the query
?7- jealous(X,Y).

The search tree for the query looks like this:
|?- jealous(X,Y)|

X = G5,
Y = G7

| 7- loves (G5, G6),loves(G7,_G6) |

_G5 = vincent, _G5 = marcellus,
_G6 = mia _G6 = mia
7- loves (_G7 m1a)| 7— loves (_G7 m1a)|

_G7 = vincent _G7 = marcellus
_G7 = vincent _G7 = marcellus

There is only one possible way of unifyingealous(X,Y) against
the knowledge base, namely by using the rule
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jealous(A,B):- loves(A,C), loves(B,C).
So the new goals that have to be satisfied are:
loves(_G5,_G6) ,loves(_G7,_G6)

Now we have to unifyloves(_G5,_G6) against the knowledge base.
There are two ways of doing this (it can either be unified witle first
fact or with the second fact) and this is why the path brandieshis
point. In both cases the godloves(_G7,mia) remains, and this can
also be satisfied by using either of two facts. All in all thexee four
leaf nodes with an empty goal list, which means that there fare
ways of satisfying the original query. The variable insiatiins for each
solution can be read off the path from the root to the leaf ndgie the
four solutions are:

1. X = _G5 = vincent andY = _G7 = vincent
2. X = _Gb = vincent andY = _G7 = marcellus
3. X = _G5 = marcellus andY = _G7 = vincent
4. X = _G5 = marcellus andY = _G7 = marcellus

Work through this example carefully, and make sure you ustdad it.

3 Exercises

Exercise 2.1. Which of the following pairs of terms unify? Where
relevant, give the variable instantiations that lead toceasful unification.

1. bread = bread

. ’Bread’

bread

. ’bread’ = bread

. Bread = bread

. bread = sausage

. food(bread) = bread
. food(bread) = X

. food(X) = food(bread)

© 0 N o o0~ w N

. food(bread,X) = food(Y,sausage)



40 Learn Prolog Now!

10. food(bread,X,beer) = food(Y,sausage,X)

11. food(bread,X,beer)

food(Y,kahuna_burger)
12. food(X) = X
13. meal (food(bread) ,drink(beer)) = meal(X,Y)

14. meal (food(bread) ,X) = meal (X,drink(beer))

Exercise 2.2. We are working with the following knowledge base:

house_elf (dobby) .
witch(hermione) .
witch(’McGonagall’).
witch(rita_skeeter).
magic(X) :- house_elf (X).
magic(X) :- wizard(X).
magic(X):- witch(X).

Which of the following queries are satisfied? Where relevagite all
the variable instantiations that lead to success.

1. 7- magic(house_elf).

2. 7- wizard(harry) .

3. 7- magic(wizard).

4. 7- magic(’McGonagall’).
5. 7- magic(Hermione).

Draw the search tree for the quemagic(Hermione).

Exercise 2.3. Here is a tiny lexicon (that is, information about
individual words) and a mini grammar consisting of one sgtitarule
(which defines a sentence to be an entity consisting of fivedsvam the
following order: a determiner, a noun, a verb, a determiaenoun).

word(determiner,a).
word(determiner,every) .

word (noun,criminal) .

word(noun, *big kahuna burger’).
word (verb,eats).
word(verb,likes).
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sentence (Wordl,Word2,Word3,Word4 ,Word5) : -
word(determiner,Word1),
word (noun,Word2),
word (verb,Word3),
word(determiner,Word4) ,
word (noun,Word5) .

What query do you have to pose in order to find out which see®nc
the grammar can generate? List all sentences that this gaanwan
generate in the order that Prolog will generate them in.

Exercise 2.4. Here are six ltalian words:
astante astoria, baratto, cobaltq pistola statale
They are to be arranged, crossword puzzle fashion, in tHewfimlg grid:

V1 V2 V3

H1

H2

H3

The following knowledge base represents a lexicon comgirthese
words:

word(astante, a,s,t,a,n,t,e).
word(astoria, a,s,t,o,r,i,a).
word(baratto, b,a,r,a,t,t,o0).
word(cobalto, c,0,b,a,1l,t,0).
word(pistola, p,i,s,t,0,1l,a).
word(statale, s,t,a,t,a,l,e).

Write a predicatecrossword/6 that tells us how to fill in the grid. The
first three arguments should be the vertical words from lefright, and
the last three arguments the horizontal words from top tdobmt
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4 Practical Session

By this stage, you should have had your first taste of runningioB
programs. The purpose of the second practical session isiggest two
sets of keyboard exercises which will help you get familiaithwthe
way Prolog works. The first set has to do with unification, teeond
with proof search.

First of all, start up your Prolog interpreter. That is, getsereen
displaying the usual “I'm ready to start” prompt, which peadily looks
something like:

?—

Verify your answers to Exercise 2.1, the unification exammpléou don'’t
need to consult any knowledge bases, simply ask Prologthjiratether
it is possible to unify the terms by using the built-#Y2 predicate. For
example, to test whethefood(bread,X) and food(Y,sausage) unify,

just type in

food(bread,X) = food(Y,sausage).

and hit return.

You should also look at what happens when your Prolog impieation
attempts to unify terms that can't be unified because it doesmry out
an occurs check. For example, see what happens when you tgihe i
following query:

g(X,Y) =Y.
If it handles such examples, try the trickier one mentionedhe text:
X=£fX), Y=£f(), X =Y.

Once you've experimented with that, it's time to move on tonsthing
new. There is another built-in Prolog predicate for ansmgrueries
about unification, namely=/2 (that is: the 2-place predicate=). This
works in the opposite way to the/2 predicate: it succeeds when its
two arguments donot unify. For example, the terma and b do not
unify, which explains the following dialogue:

?7- a \=b.
yes

Make sure you understand hoWws/2 works by trying it out on (at
least) the following examples. But do this actively, not giealy. That
is, after you type in an example, pause, and try to work outyfmurself
what Prolog is going to respond. Only then hit return to segoifi are
right.
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.a \=a
.’a’ \= a

.AN\=a

f(a) \= A

(A \= £(a)

. g(a,B,c) \= g(4,b,0)
. gla,b,c) \= g(4,0)
9. £f(X) \=X

Thus the \=/2 predicate is (essentially) the negation of the¢2
predicate: a query involving one of these predicates will daisfied
when the corresponding query involving the other is not, aité versa.
This is the first example we have seen of a Prolog mechanism for
handling negation. We discuss Prolog negation (and its |@eties) in
Chapter 10.

It's time to move on and introduce one of the most helpful sooi
Prolog: trace. This is a built-in Prolog predicate that changes the way
Prolog runs: it forces Prolog to evaluate queries one stem dime,
indicating what it is doing at each step. Prolog waits for youpress
return before it moves to the next step, so that you can seetlgxa
what is going on. It was really designed to be used as a debgggi
tool, but it's also helpful when you're learning Prolog: géng through
programs usingtrace is an excellentway of learning how Prolog proof
search works.

Let's look at an example. In the text, we looked at the prodrce
involved when we made the query(Y) to the following knowledge
base:

1
2
3
4. f(a) \= a
5
6
7
8

f(a).
f(b).

g(a).
g(b).

h(b).

k(X := £(X, gX), h(X).
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Suppose this knowledge base is in fjeoof.pl. We first consult it:

?- [proof].
yes

We then typetrace, followed by a full stop, and hit return:

7- trace.
yes

Prolog is now in trace mode, and will evaluate all querie®p dtg step.
For example, if we pose the quer(X), and then hit return every time
Prolog comes back with & we obtain (something like) the following:

[trace] 2 7- k(X).
Call: (6) k(_G34) 7
Call: (7) £(_G34) 7
Exit: (7) f(a) ?
Call: (7) g(a)
Exit: (7) g(a)
Call: (7) h(a)
Fail: (7) h(a)
Fail: (7) g(a) 7
Redo: (7) £(_G34) 7
Exit: (7) £(b) 7
Call: (7) g(b)
Exit: (7) g(b)
Call: (7) h(b)
Exit: (7) h(b)
Exit: (6) k(b)

N N N N

NN N N N

X=5
yes

Study this carefully. That is, try doing the same thing yelftsand
relate this output to the discussion of the example in the, tard in
particular, to the nodes in the search tree. To get you stanee’ll
remark that the third line is where the variable in the querywrongly)
instantiated toa. The first line markedfail is where Prolog realises
it's taken the wrong path and starts to backtrack, and the fimarked
redo is where it tries alternatives for the goak_G34).
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While learning Prolog, use trace, and use it heavily. It's raay way
to learn. Oh yes: you also need to know how to turn trace offngBi
type notrace (followed by a full stop) and hit return:

7- notrace.
yes






Chapter 3

Recursion

;- )
This chapter has two main goals:

1. To introduce recursive definitions in Prolog.

2. To show that there can be mismatches
between the declarative meaning of a Prolog
program, and its procedural meaning.

- J
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1 Recursive Definitions

Predicates can be defined recursively. Roughly speakingredigate is
recursively defined if one or more rules in its definition reféo itself.

Example 1: Eating
Consider the following knowledge base:

is_digesting(X,Y) :- just_ate(X,Y).

is_digesting(X,Y) :-
just_ate(X,Z),
is_digesting(Z,Y).

just_ate(mosquito,blood(john)).
just_ate(frog,mosquito) .
just_ate(stork,frog).

At first glance this seems pretty ordinary: it's just a knaige
base containing three facts and two rules. But the definitddnthe
is_digesting/2 predicate is recursive. Note thak_digesting/2 is
(at least partially) defined in terms of itself, for thies_digesting/2
functor occurs in both the head and body of the second ruleciélty,
however, there is an ‘escape’ from this circularity. Thispiovided by
the just_ate/2 predicate, which occurs in the first rule. (Significantly,
the body of the first rule makes no mention ak_digesting/2.)
Let's now consider both the declarative and procedural mnganof this
definition.

The word “declarative” is used to talk about the logical nmiegnof
Prolog knowledge bases. That is, the declarative meaning &frolog
knowledge base is simply “what it says”, or “what it meanswé read
it as a collection of logical statements”. And the declasatmeaning of
this recursive definition is fairly straightforward. The stirclause (the
escape clause, the one that is not recursive, or as we shallu<all
it, the base clause), simply says thaft: X has just eatery, then X is
now digestingY. This is obviously a sensible definition.

So what about the second clause, the recursive clause? dysstisat:
if X has just eaterz and Z is digestingY, then X is digestingy, too.
Again, this is obviously a sensible definition.

So now we know what this recursive definition says, but whatpeas
when we pose a query that actually needs to use this defifitibhat
is, what does this definition actually do? To use the normaildgr
terminology, what is its procedural meaning?
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This is also reasonably straightforward. The base rule ks &ll the
earlier rules we've seen. That is, if we ask whetheris digestingy,
Prolog can use this rule to ask instead the question: hasst eateny?

What about the recursive clause? This gives Prolog anottiategy
for determining whetherx is digestingY: it can try to find somez
such thatX has just eatenz, and Z is digestingY. That is, this rule
lets Prolog break the task apart into two subtasks. Hopefdibing so
will eventually lead to simple problems which can be solved dimply
looking up the answers in the knowledge base. The followingiupe
sums up the situation:

Just_ate just_ate  is_digesting
/\ N —
X Y X Z Y

LT . 4

is_digesting is_digesting
Let's see how this works. If we pose the query:
?7- is_digesting(stork,mosquito).

then Prolog goes to work as follows. First, it tries to make ws the
first rule listed concerningis_digesting; that is, the base rule. This
tells it that X is digestingY if X just ateY, By unifying X with stork
and Y with mosquito it obtains the following goal:

just_ate(stork,mosquito).

But the knowledge base doesn’t contain the information that stork
just ate the mosquito, so this attempt fails. So Prolog neids tto
make use of the second rule. By unifyirng with stork and Y with
mosquito it obtains the following goals:

just_ate(stork,Z),
is_digesting(Z,mosquito).

That is, to showis_digesting(stork,mosquito), Prolog needs to
find a value forZ such that, firstly,

just_ate(stork,Z).
and secondly,
is_digesting(Z,mosquito).

And thereis such a value forz, namely frog. It is immediate that
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just_ate(stork,frog).
will succeed, for this fact is listed in the knowledge basendAdeducing
is_digesting(frog,mosquito) .

is almost as simple, for the first clause Dé_digesting/2 reduces this
goal to deducing

just_ate(frog,mosquito).

and this is a fact listed in the knowledge base.

Well, that's our first example of a recursive rule definitionVe're
going to learn a lot more about them, but one very practicaham
should be made right away. Hopefully it's clear that when yerite a
recursive predicate, it should always have at least twoselgu a base
clause (the clause that stops the recursion at some poimd),0oae that
contains the recursion. If you don't do this, Prolog can apoff into
an unending sequence of useless computations. For exaimgle’s an
extremely simple example of a recursive rule definition:

p =P

That's it. Nothing else. It's beautiful in its simplicity. md from
a declarative perspective it's an extremely sensible (ihern boring)
definition: it says “if property p holds, then property p h&lld You
can't argue with that.

But from a procedural perspective, this is a wildly dangsroule. In
fact, we have here the ultimate in dangerous recursive :rideactly the
same thing on both sides, and no base clause to let us escape.
consider what happens when we pose the following query:

- p.

Prolog asks itself: “How do | prove?” and it realises, “Hey, I've got
a rule for that! To provep | just need to provep!”. So it asks itself
(again): “How do | provep?” and it realises, “Hey, I've got a rule for
that! To provep | just need to provep!”. So it asks itself (yet again):
“How do | prove p?” and it realises, “Hey, I've got a rule for that! To
prove p | just need to provep!” and so on and so forth.

If you make this query, Prolog won't answer you: it will head,o
looping desperately away in an unending search. That is, dh'tw
terminate, and you’ll have to interrupt it. Of course, if yose trace,
you can step through one step at a time, until you get sick dthirg
Prolog loop.
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Example 2: Descendant

Now that we know something abouwthat recursion in Prolog involves,
it is time to askwhy it is so important. Actually, this is a question that
can be answered on a number of levels, but for now, let's k&éms
fairly practical. So: when it comes to writing useful Prolggograms,
are recursive definitions really so important? And if so, ®hy

Let's consider an example. Suppose we have a knowledge base
recording facts about the child relation:

child(bridget,caroline).
child(caroline,donna).

That is, Caroline is a child of Bridget, and Donna is a childGxroline.
Now suppose we wished to define the descendant relation;ishahe
relation of being a child of, or a child of a child of, or a chilaf a
child of a child of, and so on. Here's a first attempt to do thide
could add the following twononrecursive rules to the knowledge base:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z2),
child(Z,Y).

Now, fairly obviously these definitions work up to a point,thbiney
are clearly limited: they only define the concept of descend# for
two generations or less. That's ok for the above knowledgsebdut
suppose we get some more information about the child-oftioelaand
we expand our list of child-of facts to this:

child(anne,bridget).
child(bridget,caroline) .
child(caroline,donna).
child(donna,emily) .

Now our two rules are inadequate. For example, if we pose the
queries

?- descend(anne,donna) .
or
7- descend(bridget,emily).

we get the answer no, which ot what we want. Sure, we could ‘fix’
this by adding the following two rules:
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descend(X,Y) :- child(X,Z_1),
child(Z_1,Z_2),
child(Z_2,Y).

descend(X,Y) :- child(X,Z_1),
child(Z_1,Z_2),
child(Z_2,Z_3),
child(Z_3,Y).

But, let's face it, this is clumsy and hard to read. Moreovérwe
add further child-of facts, we could easily find ourselvewvihg to add
more and more rules as our list of child-of facts grow, rulée:l

descend(X,Y) :- child(X,Z_1),
child(Z_1,Z_2),
child(Z_2,Z_3),

child(z_17,Z_18).
child(z_18,Z_19).
child(Z_19,Y).

This is not a particularly pleasant (or sensible) way to go!

But we don’t need to do this at all. We can avoid having to use
ever longer rules entirely. The following recursive predé definition
fixes everything exactly the way we want:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),
descend(Z,Y).

What does this say? The declarative meaning of the baseeciau#f
Y is a child of X, then Y is a descendant of. Obviously sensible. So
what about the recursive clause? Its declarative meaningfis is a
child of X, and Y is a descendant of, thenY is a descendant oX.
Again, this is obviously true.

So let’'s now look at the procedural meaning of this recurgikedicate,
by stepping through an example. What happens when we posgutTy:

descend (anne,donna)

Prolog first tries the first rule. The variabk in the head of the rule is

unified with anne and Y with donna and the next goal Prolog tries to
prove is
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child(anne,donna)

This attempt fails, however, since the knowledge base eeitiontains
the fact child(anne,donna) nor any rules that would allow to infer
it. So Prolog backtracks and looks for an alternative way ofving
descend (anne,donna). It finds the second rule in the knowledge base
and now has the following subgoals:

child(anne,_633),
descend(_633,donna) .

Prolog takes the first subgoal and tries to unify it with sdmmeg in
the knowledge base. It finds the faehild(anne,bridget) and the
variable _633 gets instantiated t®wridget. Now that the first subgoal
is satisfied, Prolog moves to the second subgoal. It has teepro

descend (bridget,donna)

This is the first recursive call of the predicadescend/2. As before,
Prolog starts with the first rule, but fails, because the goal

child(bridget,donna)

cannot be proved. Backtracking, Prolog finds that there iseeorsd
possibility to be checked fordescend(bridget,donna), namely the
second rule, which again gives Prolog two new subgoals:

child(bridget,_1785),
descend(_1785,donna) .

The first one can be unified with the fachild(bridget,caroline)
of the knowledge base, so that the variahl€785 is instantiated with
caroline. Next Prolog tries to prove

descend(caroline,donna) .

This is the second recursive call of predicatescend/2. As before, it
tries the first rule first, obtaining the following new goal:

child(caroline,donna)

This time Prolog succeeds, sincehild(caroline,donna) is a
fact in the database. Prolog has found a proof for the goal
descend(caroline,donna) (the second recursive call). But this means
that descend(bridget,donna) (the first recursive call) is also true,
which means that our original querdescend(anne,donna) is true as
well.
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Here is the search tree for the quedgscend(anne,donna). Make
sure that you understand how it relates to the discussiomentéxt; that
is, how Prolog traverses this search tree when trying to gtbis query.

?7- descend(anne,donna)

?- child(anne,donna) | ?- child(anne,_G43),
descend (_G43,donna)
-‘- _G43 = bridget

|?— descend (bridget,donna)

?- child(bridget,donna)| ?7- child(bridget,_G44),
descend (_G44,donna)
1- _G44 = caroline

|?— descend(caroline,donna)|

|?— child(caroline,donna)|

O

It should be obvious from this example that no matter how many
generations of children we add, we will always be able to wouk the
descendant relation. That is, the recursive definition ith lgeeneral and
compact: it containsall the information in the non-recursive rules, and
much more besides. The non-recursive rules only defined #seetidant
concept up to some fixed number of generations: we would needite
down infinitely many non-recursive rules if we wanted to caet this
concept fully, and of course that's impossible. But, in effethat's what
the recursive rule does for us: it bundles up the informati@eded to
cope with arbitrary numbers of generations into just thiees of code.

Recursive rules are really important. They enable to paclermarmous
amount of information into a compact form and to define praidis in
a natural way. Most of the work you will do as a Prolog prograenm
will involve writing recursive rules.
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Example 3: Successor

In the previous chapter we remarked that building structtheough
unification is a key idea in Prolog programming. Now that weokn
about recursion, we can give more interesting illustratiaf this.

Nowadays, when human beings write numerals, they usually us
decimal notation (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and
so on) but as you probably know, there are many other notation
For example, because computer hardware is generally basedigital
circuits, computers usually udeginary notation to represent numerals (O,
1, 10, 11, 100, 101, 110, 111, 1000, and so on), for the O can be
implemented as a switch being off, the 1 as a switch being otherlO
cultures use different systems. For example, the ancieriylBaians
used a base 60 system, while the ancient Romans used a ratfrca
system (I, 11, 1, IV, V, VI, VII, VIII, IX, X). This last example shows
that notational issues can be important. If you don't beidhis, try
figuring out a systematic way of doing long-division in Romaatation.
As you'll discover, it's a frustrating task. Apparently tiRomans had a
group of professionals (analogs of modern accountants) sgexialised
in this.

Well, here’s yet another way of writing numerals, which isnstimes
used in mathematical logic. It makes use of just four symb6lssucg
and the left and right parentheses. This style of numeraleiined by
the following inductive definition:

1. 0 is a numeral.
2. If X is a numeral, then so isucc(X)

As is probably clear,succ can be read as short fauccessar That
is, succ(X)represents the number obtained by adding one to the number
represented byX. So this is a very simple notation: it simply says that
0 is a numeral, and that all other numerals are built by staclsucc
symbols in front. (In fact, it's used in mathematical logiecause of this
simplicity. Although it wouldn’'t be pleasant to do housetha@ccounts in
this notation, it is a very easy notation to prove thirgsout)

Now, by this stage it should be clear that we can turn this diefim
into a Prolog program. The following knowledge base does: thi

numeral(0) .

numeral (succ(X)) :- numeral(X).

So if we pose queries like
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numeral (succ(succ(succ(0)))).

we get the answer yes.
But we can do some more interesting things. Consider whapédrap
when we pose the following query:

numeral (X) .

That is, we're saying “Ok, show me some numerals”. Then we ltave
the following dialogue with Prolog:

X=0;

X = succ(0) ;

X = succ(succ(0)) ;

X = succ(succ(succ(0))) ;

X = succ(succ(succ(succ(0)))) ;

X = succ(succ(succ(succ(succ(0))))) ;

X = succ(succ(succ(succ(succ(succ(0)))))) ;

X = succ(succ(succ(succ(succ(succ(succ(0))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(0))))))))
yes

Yes, Prolog is counting: but what's really important hew it's doing
this. Quite simply, it's backtracking through the recuesidefinition,
and actuallybuilding numerals using unification. This is an instructive
example, and it is important that you understand it. The best to do
SO is to sit down and try it out, withtrace turned on.

Building and binding. Recursion, unification, and proof reba These
are ideas that lie at the heart of Prolog programming. Whemev
we have to generate or analyse recursively structured @bjetich as
these numerals) the interplay of these ideas makes Prologweerful
tool. For example, in the next chapter we shall introduces,lisan
extremely important recursive data structure, and we val shat Prolog
is a natural list processing language. Many applicatioramfmutational
linguistics is a prime example) make heavy use of recungigtluctured
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objects, such as trees and feature structures. So it's ndicydarly
surprising that Prolog has proved useful in such applioatio

Example 4: Addition

As a final example, let's see whether we can use the repreésentaf
numerals that we introduced in the previous section for glogimple
arithmetic. Let’s try to define addition. That is, we want tefide a
predicateadd/3 which when given two numerals as the first and second
argument returns the result of adding them up as its thirdiraemt. For
example:

?7- add(succ(succ(0)),succ(succ(0)),
succ (succ(succ(succ(0))))).

yes

?- add(succ(succ(0)),succ(0),Y).

Y = succ(succ(succ(0)))

There are two things which are important to notice:

1. Whenever the first argument & the third argument has to be the
same as the second argument:

?7- add(0,succ(succ(0)),Y).
Y = succ(succ(0))

7- add(0,0,Y).

Y=0

This is the case that we want to use for the base clause.

2. Assume that we want to add the two numerdsand Y (for
example succ (succ(succ(0))) and succ(succ(0))) and thatX
is not 0. Now, if X1 is the numeral that has ongucc functor
less thanX (that is, succ(succ(0)) in our example) and if we
know the result — let's call itz — of addingX1 and Y (nhamely
succ (succ(succ(succ(0))))), then it is very easy to compute
the result of addingk andY: we just have to add ongucc-functor
to Z. This is what we want to express with the recursive clause.

Here is the predicate definition that expresses exactly winatjust
said:

add(0,Y,Y).
add(succ(X),Y,succ(Z)) :-
add(X,Y,Z).
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So what happens, if we give Prolog this predicate definitiad then
ask:

?- add(succ(succ(succ(0))), succ(succ(0)), R).

Let's go step by step through the way Prolog processes thisyguhe
trace and search tree for the query are given below.

The first argument is no®, which means that only the second clause
for add/3 can be used. This leads to a recursive call aafd/3.
The outermostsucc functor is stripped off the first argument of the
original query, and the result becomes the first argumentefrecursive
query. The second argument is passed on unchanged to thesivecu
query, and the third argument of the recursive query is aab&j the
internal variable _G648 in the trace given below. Note thatG648
is not instantiated yet. However it shares values with(the variable
that we used as the third argument in the original query) lEea&
was instantiated tosucc(_G648) when the query was unified with the
head of the second clause. But that means thas not a completely
uninstantiated variable anymore. It is now a complex terhat thas a
(uninstantiated) variable as its argument.

The next two steps are essentially the same. With every dtep t
first argument becomes one layer sficc smaller; both the trace and
the search tree given below show this nicely. At the same ,time
succ functor is added toR at every step, but always leaving the
innermost variable uninstantiated. After the first reawgsicall R is
succ(_G648). After the second recursive callG648 is instantiated with
succ(_G650), so thatR is succ(succ(_G650). After the third recursive
call, _G650 is instantiated withsucc(_G652) and R therefore becomes
succ(succ(succ(_G652))). The search tree shows this step by step
instantiation.

At this stage all succ functors have been stripped off the first
argument and we can apply the base clause. The third arguimment
equated with the second argument, so the ‘hole’ (the unitistad
variable) in the complex tern® is finally filled, and we are through.

Here’s the complete trace of our query:

Call: (6) add(succ(succ(succ(0))), succ(succ(0)), R)
Call: (7) add(succ(succ(0)), succ(succ(0)), _G648)
Call: (8) add(succ(0), succ(succ(0)), _G650)

Call: (9) add(0, succ(succ(0)), _G652)
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Exit: (9) add(0, succ(succ(0)), succ(succ(0)))
Exit: (8) add(succ(0), succ(succ(0)), succ(succ(succ(0))))

Exit: (7) add(succ(succ(0)), succ(succ(0)),
succ(succ(succ(succ(0)))))

Exit: (6) add(succ(succ(succ(0))), succ(succ(0)),
succ (succ(succ(succ(succ(0))))))

And here’s the search tree:

|?— add (succ (succ(succ(0))), succ(succ(0)), R)|

R = succ(_G648)
A

|?— ad@LSU£C(sﬁéc(0)), succ(succ(0)), _G648)|

v
_G650 = succ(_G652)
A

L?w“addfé, succ (succ(0)), _G652)|

v
_G652 = succ(succ(0))

|

2 Rule Ordering, Goal Ordering, and Termination

Prolog was the first reasonably successful attempt to creatkgic
programming language. Underlying logic programming is mmée (and
seductive) vision: the task of the programmer is simply describe
problems. The programmer should write down (in the languafg®gic)
a declarative specification (that is: a knowledge base),chwvidescribes
the situation of interest. The programmer shouldn’t havetdt the
computerwhat to do. To get information, he or she simply asks the
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questions. It's up to the logic programming system to figuo¢ loow to
get the answer.

Well, that's the idea, and it should be clear that Prolog helser
some important steps in this direction. But Prolognigt, repeatnot, a
full logic programming language. If you only think about tleclarative
meaning of a Prolog program, you are in for a very tough times A
we learned in the previous chapter, Prolog has a very spegiig of
working out the answers to queries: it searches the knowlebgse
from top to bottom, clauses from left to right, and uses badking to
recover from bad choices. These procedural aspects havenportant
influence on what actually happens when you make a query. We ha
already seen a dramatic example of a mismatch between thedural
and declarative meaning of a knowledge base (rememberpthep
program?), and as we shall now see, it is easy to define kngeled
bases which (read logically) describe the same situatidng, which
behave very differently. Let’s consider the matter.

Recall our earlier descendant program (let's caldéiscendl.pl):

child(anne,bridget) .
child(bridget,caroline).
child(caroline,donna).
child(donna,emily) .

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),
descend(Z,Y).

We’ll make one change to it, and call the resddiscend2.pl:

child(anne,bridget) .
child(bridget,caroline).
child(caroline,donna).
child(donna,emily) .

descend(X,Y) :- child(X,Z),
descend(Z,Y).

descend(X,Y) :- child(X,Y).

All we have done is change the rule order. So if we read therpmg
as a purely logical definition, nothing has changed. But dibeschange
give rise to procedural differences? Yes, but nothing $iggmt. For
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example, if you work through the examples you will see that first
solution thatdescendl.pl finds is

X = anne
Y = bridget

whereas the first solution thatescend2.pl finds is

X = anne
Y = emily

But (as you should check) both programs generate exactly stdrae
answers, they merely find them in a different order. And thésai
general point. Roughly speaking (we’ll add a caveat latey cmanging
the order of rules in a Prolog program does not change (up eootder
in which solutions are found) the program’s behaviour.

So let's move on. We'll make one small change descend?2.pl,
and call the resuldescend3.pl:

child(anne,bridget) .
child(bridget,caroline) .
child(caroline,donna).
child(donna,emily) .

descend(X,Y) :- descend(Z,Y),
child(X,Z).

descend(X,Y) :- child(X,Y).

Note the difference. Here we've changed the goal ondi¢hin a rule,
not the rule order. Now, once again, if we read the program as a
purely logical definition, nothing has changed; it means $hee thing
as the previous two versions. But this time the program’sabehur has
changed dramatically. For example, if you pose the query

descend (anne,emily) .

you will get an error message (“out of local stack”, or sormah
similar). Prolog is looping. Why? Well, in order to satisfpet query
descend(anne,emily) Prolog uses the first rule. This means that its
next goal will be to satisfy the query

descend(W1,emily)

for some new variabledl. But to satisfy this new goal, Prolog again
has to use the first rule, and this means that its next goal isggo be
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descend(W2,emily)

for some new variabl&2. And of course, this in turn means that its next
goal is going to bedescend(W3,emily) and thendescend(W4,emily),
and so on. That is, the (at first glance innocuous) change én gibal
order has resulted in procedural disaster. To use the sthrdaninology,
we have here a classic example of a left recursive rule, thatirule
where the leftmost item of the body is identical (modulo theice of
variables) with the rule’s head. As our example shows, swutésreasily
give rise to non-terminating computations. Goal order, &mdarticular
left recursion, is the root of all evil when it comes to nomt@ation.

Still, as we said earlier, we need to make one small caveatitabo
rule ordering. We said earlier that rule ordering only ctemghe order
in which solutions are found. However this may not be true & are
working with non-terminating programs. To see this, coesithe fourth
(and last) variant of our descendant program, nandelycend4.pl:

child(anne,bridget) .
child(bridget,caroline).
child(caroline,donna).
child(donna,emily) .

descend(X,Y) :- child(X,Y).

descend(X,Y) :- descend(Z,Y),
child(X,Z).

This program isdescend3.pl with the rule ordering reversed. Now
(once again) this program has the same declarative measirtjeaother
variants, but it is also procedurally different from its atles. First, and
most obviously, it is very different procedurally from bo#iescendl.pl
and descend2.pl. In particular, because it contains a left recursive rule,
this new program does not terminate on some input. For exar(jpbt
like descend3.pl) this new program does not terminate when we pose
the query

descend(anne,emily) .

But descend4.pl is not procedurally identical talescend3.pl. The
rule ordering reversal does make a difference. For exandplesend3.pl
will not terminate if we pose the query

descend(anne,bridget) .
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However descend4.pl will terminate in this case, for the rule reversal
enables it to apply the non-recursive rule and halt. So whesoiines to
non-terminating programs, rule ordering changes can leadome extra
solutions being found. Nonetheless, goal ordering, noé ridering, is
what is truly procedurally significant. To ensure termioatiwe need to
pay attention to the order of goals within the bodies of rul@mkering
with rule orderings does not get to grips with the roots ofmieation
problems — at best it can yield some extra solutions.

Summing up, our four variant descendant programs are Prolog
knowledge bases which describe exactly the same situatlmrtsbehave
differently. The difference in behaviour betweefescendl.pl and
descend2.pl (which differ only in the way rules are ordered) is
relatively minor: they generate the same solutions, but diffgrent order.
But descend3.pl anddescend4.pl are procedurally very different from
their two cousins, and this is because they differ from thenthie way
their goals are ordered. In particular, both these variaastain left
recursive rules, and in both cases this leads to non-tetimindehaviour.
The change in rule ordering betweelescend3.pl and descend4.pl
merely means thadescend4.pl will terminate in some cases where
descend3.pl will not.

What are the ramifications of our discussion for the pratitiea
of producing working Prolog programs? It's probably best day the
following. Often you can get the overall idea (the big piefuof how
to write the program by thinking declaratively, that is, byinking in
terms of describing the problem accurately. This is an dagelway to
approach problems, and certainly the one most in keepinl thi¢ spirit
of logic programming. But once you've done that, you need hmk
about how Prolog will work with knowledge bases you have tent
In particular, to ensure termination, you need to check tthet goal
orderings you have given are sensible. The basic rule of bhismever
to write as the leftmost goal of the body something that isniidal
(modulo variable names) with the goal given in the head. &athlace
such goals (which trigger recursive calls) as far as passibWards the
right of the tail. That is, place them after the goals whickt téor the
various (non-recursive) termination conditions. Doingstlyives Prolog a
sporting chance of fighting it's way through your recursivefinitions to
find solutions.
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3 Exercises

Exercise 3.1. In the text, we discussed the predicate

descend(X,Y) :- child(X,Y).
descend(X,Y) :- child(X,Z),
descend(Z,Y).

Suppose we reformulated this predicate as follows:

descend(X,Y) :- child(X,Y).
descend(X,Y) :- descend(X,Z),
descend(Z,Y).

Would this be problematic?

Exercise 3.2. Do you know these wooden Russian dolls (Matryoshka
dolls) where the smaller ones are contained in bigger onesfe lit a
schematic picture:

katarina

olga

natasha

irna

First, write a knowledge base using the predicaterectlyIn/2
which encodes which doll is directly contained in which athdoll.
Then, define a recursive predicaten/2, that tells us which doll is
(directly or indirectly) contained in which other dolls. F@xample,
the query in(katarina,natasha) should evaluate to true, while
in(olga, katarina) should fail.

Exercise 3.3. We have the following knowledge base:

directTrain(saarbruecken,dudweiler).
directTrain(forbach, saarbruecken).
directTrain(freyming,forbach) .
directTrain(stAvold,freyming) .
directTrain(fahlquemont,stAvold) .
directTrain(metz,fahlquemont) .
directTrain(nancy,metz) .
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That is, this knowledge base holds facts about towns it isiptes to
travel between by taking alirect train. But of course, we can travel
further by chaining together direct train journeys. Write recursive
predicate travelFromTo/2 that tells us when we can travel by train
between two towns. For example, when given the query

travelFromTo (nancy,saarbruecken) .

it should reply yes.

Exercise 3.4. Define a predicategreater_than/2 that takes two
numerals in the notation that we introduced in the text (tist O,

succ(0), succ(succ(0)), and so on) as arguments and degidether the

first one is greater than the second one. For example:

?- greater_than(succ(succ(succ(0))),succ(0)).

yes

?7- greater_than(succ(succ(0)),succ(succ(succ(0)))).
no

Exercise 3.5. Binary trees are trees where all internal nodes have
exactly two children. The smallest binary trees consist ofyoone
leaf node. We will represent leaf nodes asaf(Label). For
instance, leaf (3) and leaf(7) are leaf nodes, and therefore small
binary trees. Given two binary treeB1 and B2 we can combine
them into one binary tree using the functarree/2 as follows:
tree(B1,B2). So, from the leavedeaf (1) and leaf(2) we can build
the binary treetree(leaf(1),leaf(2)). And from the binary trees
tree(leaf(1),leaf(2)) and leaf(4) we can build the binary tree
tree(tree(leaf (1), leaf(2)),leaf(4)).

Now, define a predicatewap/2, which produces the mirror image of
the binary tree that is its first argument. For example:

7- swap(tree(tree(leaf (1), leaf(2)), leaf(4)),T).
T = tree(leaf(4), tree(leaf(2), leaf(1))).
yes

4 Practical Session

By now, you should feel more at home with writing and runninasio
Prolog programs. In this practical session we first suggest $eries
of keyboard exercises which will help you get familiar witkecursive
definitions in Prolog, and then give you some programmingol@ms to
solve.
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First the keyboard exercises. As recursive programming 6s S
fundamental to Prolog, it is important that you have a firm sgreof
what it involves. In particular, it is important that you wrdtand the
process of variable instantiation when recursive defingi@are used, and
that you understand why the order of goals in rules can male th
difference between termination and non-termination. So:

1. Load descendl.pl, turn on trace, and pose the query
descend(anne,emily). Count how many steps it takes Prolog
to work out the answer (that is, how many times do you have
to hit the return key). Now turntrace off and pose the query
descend(X,Y). How many answers are there?

2. Load descend2.pl. This is the variant ofdescendl.pl with the
rule order reversed. Repeat the traces you have carried avut f
descendl.pl, and compare the results.

3. Load descend3.pl. This is the variant ofdescend2.pl in which
the goal order within the recursive rule is switched, resgltin a
left recursive rule. Because of this, even for such simplerigs as
descend(anne,bridget), Prolog will not terminate. Step through
an example, usingrace, to confirm this.

4. Load descend4.pl. This is the variant ofdescend3.pl obtained
by switching the rule order. Sdescend4.pl also contains a left
recursive rule, and does not terminate on all input. But ieslo
terminate on some input wheré@escend3.pl does not. Which
extra solutions does it find?

As we said in the text, goal ordering, not rule ordering is wia
truly procedurally significant. But with non-terminatingagrams, rule
ordering changes can have unexpected effects. Recall theessor
program discussed in the text (let's call ritimerall.pl):

numeral (0) .
numeral (succ(X)) :- numeral(X).

Let's swap the order of the two clauses, and call the resutieral2.pl:

numeral (succ(X)) :- numeral(X).
numeral (0) .

Clearly the declarative, or logical, content of this progrés exactly the
same as the earlier version. But what are the procedurardiftes, if
any?
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1. Create a file containingumeral2.pl, load it, and investigate what
happens if we pose queries abapgecific numerals. For example,
suppose we ask:

numeral (succ(succ(succ(0)))).

Do numerall.pl and numeral2.pl behave in the same way on
such input?

2. Second, look at what happens if we try generatenumerals, that
is, suppose we pose the query

numeral (X) .

Do the programs display identical behaviour?

Here are some programs for you to try your hand at.

1. Imagine that the following knowledge base describes aemdhe
facts determine which points are connected, that is, fromchvh
points you can get to which other points in one step. Furtbeem
imagine that all paths are one-way streets, so that you cdy on
walk them in one direction. So, you can get from point 1 to poin
2, but not the other way round.

connected(1,2).
connected(3,4).
connected(5,6).
connected(7,8).
connected(9,10).
connected(12,13).
connected(13,14).
connected(15,16).
connected(17,18).
connected(19,20).
connected(4,1).
connected(6,3).
connected(4,7).
connected(6,11).
connected(14,9).
connected(11,15).
connected(16,12).
connected(14,17).
connected(16,19).
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Write a predicatepath/2 that tells you from which points in the
maze you can get to which other points when chaining together
connections given in the above knowledge base. Can you get fr
point 5 to point 10? Which other point can you get to when
starting at point 1? And which points can be reached from tpoin
1372

2. We are given the following knowledge base of travel infation:

byCar (auckland,hamilton) .
byCar (hamilton,raglan).
byCar (valmont,saarbruecken) .
byCar (valmont ,metz) .

byTrain(metz,frankfurt) .
byTrain(saarbruecken, frankfurt).
byTrain(metz,paris) .
byTrain(saarbruecken,paris) .

byPlane (frankfurt,bangkok) .
byPlane (frankfurt,singapore) .
byPlane(paris,losAngeles).
byPlane (bangkok,auckland) .
byPlane(singapore,auckland) .
byPlane(losAngeles,auckland) .

Write a predicatecravel/2 which determines whether it is possible
to travel from one place to another by chaining together tain,
and plane journeys. For example, your program should angegr
to the querytravel(valmont,raglan).

. So, by usingtravel/2 to query the above database, you can find

out that it is possible to go from Valmont to Raglan. If you are
planning such a voyage, that's already something useful nowk
but you would probably prefer to have the precise route from
Valmont to Raglan. Write a predicateravel/3 which tells you
which route to take when travelling from one place to anothar
example, the program should respond

X = go(valmont,metz,
go(metz,paris,
go(paris,losAngeles)))

to the querytravel(valmont,losAngeles,X)
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4. Extend the predicateravel/3 so that it not only tells you the
route to take to get from one place to another, but dsav you
have to travel. That is, the new program should let us know, fo
each stage of the voyage, whether we need to travel by cam, tra

or plane.






Chapter 4

Lists

4 )
This chapter has three main goals:

1. To introduce lists, an important recursive data
structure often used in Prolog programming.

2. To define the member/2 predicate, a funda-
mental Prolog tool for manipulating lists.

3. To introduce the idea of recursing down lists.

- J
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1 Lists

As its name suggests, a list is just a plain old list of itemsighily
more precisely, it is a finite sequence of elements. Here ames
examples of lists in Prolog:

[mia, vincent, jules, yolanda]

[mia, robber(honey_bunny), X, 2, mial

(]

[mia, [vincent, jules], [butch, girlfriend(butch)]]

[(1, dead(z), [2, [b, cl], [1, Z, [2, [b, c]]]

We can learn some important things from these examples.

1.

We can specify lists in Prolog by enclosing the elementsheflist

in square brackets (that is, the symbdlsand 1). The elements
are separated by commas. For example, the first list showmeabo
[mia, vincent, jules, yolandal, is a list with four elements,
namely mia, vincent, jules, and yolanda. The length of a list

is the number of elements it has, so our first example is a fist o
length four.

. From [mia,robber (honey_bunny),X,2,mia], our second example,

we learn that all sorts of Prolog objects can be elements a$ta |
The first element of this list ismia, an atom; the second element

is robber (honey_bunny), a complex term; the third element ¥s

a variable; the fourth element i8, a number. Moreover, we also
learn that the same item may occur more than once in the same
list: for example, the fifth element of this list i&ia, which is
same as the first element.

. The third example shows that there is a special list, thpterist.

The empty list (as its name suggests) is the list that cositaio
elements. What is the length of the empty list? Zero, of @®urs
(for the length of a list is the number of members it contaizsg
the empty list contains nothing).

. The fourth example teaches us something extremely impbrt

lists can contain other lists as elements. For example, dvensl
element of
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[mia, [vincent, jules], [butch,girlfriend(butch)]

is [vincent, jules]. The third is [butch,girlfriend(butch)].

What is the length of the fourth list? The answer is: threeydil
thought it was five (or indeed, anything else) you're not king
about lists in the right way. The elements of the list are the
things between the outermost square brackets separatednbmas.
So this list containghree elements: the first element isia, the
second element is[vincent, jules], and the third element is
[butch, girlfriend(butch)].

5. The last example mixes all these ideas together. We haxe de
list which contains the empty list (in fact, it contains itite), the
complex termdead(z), two copies of the list[2, [b, c]], and
the variableZ. Note that the third (and the last) elements are lists
which themselves contain lists (namely, c]).

Now for an important point. Any non-empty list can be thouglfitas
consisting of two parts: the head and the tail. The head iplginthe
first item in the list; the tail is everything else. To put it reoprecisely,
the tail is the list that remains when we take the first elemangy;
that is, the tail of a list is always a list For example, the head of

[mia, vincent, jules, yolanda]

is mia and the tail is [vincent, jules, yolanda]. Similarly, the
head of

(L], dead(z), [2, [b, cl], [I, Z, [2, [b, cl]]

is [1, and the tail is[dead(z), [2,[b,c]],[1,Z,[2,[b, c1]1]. And

what are the head and the tail of the liglead(z)]? Well, the head is
the first element of the list, which igead(z), and the tail is the list
that remains if we take the head away, which, in this casehaésempty
list [].

What about the empty list? It has neither a head nor a tail.t Tha
is, the empty list has no internal structure; for Proldgd, is a special,
particularly simple, list. As we shall learn when we startiting
recursive list processing programs, this fact plays an mamb role in
Prolog programming.

Prolog has a special built-in operator which can be used to
decompose a list into its head and tail. It is important to tgetknow
how to use|, for it is a key tool for writing Prolog list manipulation
programs.
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The most obvious use of is to extract information from lists. We
do this by using| together with unification. For example, to get hold
of the head and tail offlmia,vincent, jules,yolandal] we can pose
the following query:

?- [Head|Tail] = [mia, vincent, jules, yolanda].
Head = mia

Tail = [vincent, jules,yolandal
yes

That is, the head of the list has become boundiéad and the tail of
the list has become bound tail. Note that there is nothing special
aboutHead and Tail, they are simply variables. We could just as well
have posed the query:

?- [X1Y] = [mia, vincent, jules, yolanda].
X = mia
Y = [vincent, jules,yolanda]

yes

As we mentioned above, only non-empty lists have heads aitgl ta
If we try to use | to pull [1 apart, Prolog will fail:

7- [XI1Y] = 1.
no

That is, Prolog treatd] as a special list. This observation is extremely
important. We’'ll see why later.

Let's look at some other examples. We can extract the headtaihd
of the following list just as we saw above:

?- [XIY] = [[], dead(z), [2, [b, c]], [], Z].

X=1

Y = [dead(z),[2,[b,c]],[]1,_7800]
Z = _7800

yes

That is: the head of the list is bound % the tail is bound toy. (We
also learn that Prolog has bourrdto the internal variable 7800.)
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But we can do a lot more withl; it really is a flexible tool. For
example, suppose we wanted to know what the tingt elements of the
list were, and also the remainder of the list after the secelaent.
Then we’d pose the following query:

7- [X,Y | W] = [[], dead(z), [2, [b, c]], [1, Z].

X =1

Y = dead(z)

W= [[2,[b,c]], [],_8327]
Z = _8327

yes

That is, the head of the list is bound ®, the second element is
bound toy, and the remainder of the list after the second element is
bound tow (that is, W is the list that remains when we take away the
first two elements). Sol can not only be used to split a list into its
head and its tail, we can also use it to split a list at any poliat the
left of | we simply indicate how many elements we want to take away
from the front of the list, and then to right of the we will get what
remains.

This is a good time to introduce the anonymous variable. Bs@p
we were interested in getting hold of the second and fourttmehts of
the list:

[[], dead(z), [2, [b, <11, [, Z].
Now, we could find out like this:

7- [X1,X2,X3,X4 | Tail]l =
[[], dead(z), [2, [b, <11, [1, Z].

X1 =1

X2 = dead(z)
X3 = [2,[b,c]]
X4 =1

Tail = [_8910]
Z = _8910

yes

Ok, we have got the information we wanted: the values we are
interested in are bound to the variabl#g and X4. But we've got a
lot of other information too (namely the values bound #0, X3 and
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Tail). And perhaps we're not interested in all this other stuff. sb,
it's a bit silly having to explicitly introduce variablez1, X3 and Tail
to deal with it. And in fact, there is a simpler way to obtaamly the
information we want: we can pose the following query instead

7- [L,X,.,YI_] = [[], dead(z), [2, [b, cl], 01, Z].

X = dead(z)
Y =[]

Z = _9593
yes

The _ symbol (that is, underscore) is the anonymous variable. We
use it when we need to use a variable, but we're not interestedhat
Prolog instantiates the variable to. As you can see in thesalexample,
Prolog didn’t bother telling us what was bound to. Moreover, note
that each occurrence of is independent each is bound to something
different. This couldn’t happen with an ordinary variablé apurse, but
then the anonymous variable isn't meant to be ordinary. stimply a
way of telling Prolog to bind something to a given positiommpletely
independently of any other bindings.

Let's look at one last example. The third element of our wogki
example is a list (namehf2, [b, c]]). Suppose we wanted to extract
the tail of this internal list, and that we are not interestedany other
information. How could we do this? As follows:

7- [L,_, [LIX]I] =
(01, dead(z), [2, [b, 1], [I, Z, [2, [b, c]l].

X
YA
yes

[[b,c]]
_10087

2 Member

It's time to look at our first example of a recursive Prolog gnam for
manipulating lists. One of the most basic things we woule Itk know
is whether something is an element of a list or not. So let'$tewa
program that, when given as inputs an arbitrary objgcand a listL,
tells us whether or notX belongs toL. The program that does this
is usually called member, and it is the simplest example ofraloB
program that exploits the recursive structure of lists. eHéris:
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member (X, [X|T]).
member (X, [HIT]) :- member(X,T).

That's all there is to it: one fact (hamelyember (X, [X|T])) and one
rule (namely member (X, [H|T]) :- member(X,T)). But note that the
rule is recursive (after all, the functatember occurs in both the rule's
head and body) and it is this that explains why such a shomgrpro is
all that is required. Let's take a closer look.

We'll start by reading the program declaratively. And reads tway, it
is obviously sensible. The first clause (the fact) simplyssagn object
X is a member of a list if it is the head of that list. Note that weed
the built-in | operator to state this (simple but important) principle w@bo
lists.

What about the second clause, the recursive rule? This saysibject
X is member of a list if it is a member of the tail of the list. Agai
note that we used thé operator to state this principle.

Now, clearly this definition makes good declarative senseit 8oes
this program actuallydo what it is supposed to do? That is, will it really
tell us whether an objecX belongs to a listL? And if so, how exactly
does it do this? To answer such questions, we need to thinktako
procedural meaning. Let's work our way through a few examsple

Suppose we posed the following query:

?7- member (yolanda, [yolanda,trudy,vincent, jules]).
Prolog will immediately answer yes. Why? Because it can ynif
yolanda with both occurrences oX in the first clause (the fact) in the

definition of member/2, so it succeeds immediately.
Next consider the following query:

?7- member (vincent, [yolanda,trudy,vincent, jules]).
Now the first rule won't help {incent and yolanda are distinct atoms)
so Prolog goes to the second clause, the recursive rule. gikiss
Prolog a new goal: it now has to see if

member (vincent, [trudy,vincent, jules]).

Once again the first clause won’t help, so Prolog goes (again)he
recursive rule. This gives it a new goal, namely

member (vincent, [vincent, jules]).
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This time, the first clause does help, and the query succeeds.

So far so good, but we need to ask an important question. What
happens when we pose a query thalls? For example, what happens
if we pose the query

member (zed, [yolanda,trudy,vincent, jules]).

Now, this should obviously fail (after allzed is not on the list).
So how does Prolog handle this? In particular, how can we be su
that Prolog really will stop and sayno, instead going into an endless
recursive loop?

Let's think this through systematically. Once again, thestficlause
cannot help, so Prolog uses the recursive rule, which givesriew goal

member (zed, [trudy,vincent, jules]).

Again, the first clause doesn’'t help, so Prolog reuses tharsae rule
and tries to show that

member (zed, [vincent, jules]).

Similarly, the first rule doesn't help, so Prolog reuses tleeosd rule
yet again and tries the goal

member (zed, [jules]) .

Again the first clause doesn’t help, so Prolog uses the secoid
which gives it the goal

member (zed, [1)

And this is where things get interesting. Obviously the first clauaa’tc
help here. But note:ithe recursive rule can’t do anything more either
Why not? Simple: the recursive rule relies on splitting th&t into a
head and a tail, but as we have already seen, the emptycdist be
split up in this way. So the recursive rule cannot be appligdee and
Prolog stops searching for more solutions and announcesThat is, it
tells us thatzed does not belong to the list, which is just what it ought
to do.

We could summarise thenember/2 predicate as follows. It is a
recursive predicate, which systematically searches ddwenléngth of the
list for the required item. It does this by stepwise breakiomgvn the
list into smaller lists, and looking at the first item of eacmadler list.
This mechanism that drives this search is recursion, andréhson that
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this recursion is safe (that is, the reason it does not go caevéo) is
that at the end of the line Prolog has to ask a question abeuteihpty
list. The empty listcannot be broken down into smaller parts, and this
allows a way out of the recursion.

Well, we've now seen whynember/2 works, but in fact it's far more
useful than the previous example might suggest. Up till now'vey
only been using it to answer yes/no questions. But we can ptse
guestions containing variables. For example, we can hagefdhowing
dialog with Prolog:

member (X, [yolanda,trudy,vincent, jules]).

X = yolanda ;
X = trudy ;

X = vincent ;
X = jules ;
no

That is, Prolog has told us what every member of a list is. This
an extremely common use afember/2. In effect, by using the variable
we are saying to Prolog: “Quick! Give me some element of tis!”li
In many applications we need to be able to extract members lidta
and this is the way it is typically done.

One final remark. The way we definettmber/2 above is certainly
correct, but in one respect it is a little messy.

Think about it. The first clause is there to deal with the he&dhe
list. But although the tail is irrelevant to the first clausee named the
tail using the variableT. Similarly, the recursive rule is there to deal
with the tail of the list. But although the head is irrelevamre, we
named it using the variabl&. These unnecessary variable names are
distracting: it's better to write predicates in a way thatuses attention
on what is really important in each clause, and the anonymausble
gives us a nice way of doing this. That is, we can rewtitenber/2 as
follows:

member (X, [X[_1).
member (X, [_|T]) :- member(X,T).
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This version is exactly the same, both declaratively andceutarally.
But it's just that little bit clearer: when you read it, youeaforced to
concentrate on what is essential.

3 Recursing down Lists

The member/2 predicate works by recursively working its way down a
list, doing something to the head, and then recursively gidimee same
thing to the tail. Recursing down a list (or indeed, severstis) in this
way is extremely common in Prolog; so common, in fact, thatisit
important that you really master the technique. So let'skla another
example.

When working with lists, we often want to compare one list hwit
another, or to copy bits of one list into another, or to trateslthe
contents of one list into another, or something similar. d%feran
example. Let's suppose we need a predicake/2 that takes two lists
as arguments, and succeeds if the first argument is a lisgtsofand the
second argument is a list afs of exactly the same length. For example,
if we pose the following query

a2b([a,a,a,a], [b,b,b,b]).

we want Prolog to say yes. On the other hand, if we pose theyquer
a2b([a,a,a,al, [b,b,bl).

or the query
a2b([a,c,a,al, [b,b,5,4]).

we want Prolog to say no.

When faced with such tasks, often the best way to set abowingol
them is to start by thinking about the simplest possible .cadéow,
when working with lists, thinking about the simplest cas¢enfmeans
thinking about the empty list, and it certainly means thigehe After
all: what is the shortest possible list ak? It's the empty list. Why?
Because it contains nas at all. And what is the shortest possible list
of bs? Again, the empty list: n®ds whatsoever in that. So the most
basic information our definition needs to contain is

a2b([]1,[1).

This records the obvious fact that the empty list containactyx as
many as as bs. But although obvious, this fact turns out to play an
important role in our program, as we shall see.
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So far so good: but how do we proceed? Here's the idea: for
longer lists, think recursively So: when shoulda2b/2 decide that two
non-empty lists are a list ohs and a list ofbs of exactly the same
length? Simple: when the head of the first list is @anand the head of
the second list is &, and a2b/2 decides that the two tails are lists of
as and bs of exactly the same length! This immediately gives us the
following rule:

a2b([alTal, [bITb]) :- a2b(Ta,Tb).

This says: thea2b/2 predicate should succeed if its first argument is a
list with head a, its second argument is a list with head and a2b/2
succeeds on the two tails.

Now, this definition make good sense declaratively. It is mpé¢ and
natural recursive predicate, the base clause dealing whigheimpty list,
the recursive clause dealing with non-empty lists. But havesdit work
in practice? That is, what is its procedural meaning? Fomgle, if
we pose the query

a2b([a,a,al,[b,b,bl).

Prolog will say yes, which is what we want — buthy exactly does
this happen?

Let's work the example through. In this query, neither list @mpty,
so the fact does not help. Thus Prolog goes on to try the reeursle.
Now, the query does match the rule (after all, the head of tist fist
is a and the head of the second ¥ so Prolog now has a new goal,
namely

a2b([a,al, [b,b]l).

Once again, the fact does not help with this, but the recerrsile can
be used again, leading to the following goal:

a2b([al, [b]).

Yet again the fact does not help, but the recursive rule dseswe get
the following goal:

a2b (1, [1).

At last we can use the fact: this tells us that, yes, we readlyhdve two
lists here that contain exactly the same numberasfandbs (namely,
none at all). And because this goal succeeds, this meanshéagoal

a2b([al, [b]).
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succeeds too. This in turn means that the goal
a2b([a,al, [b,bl).

succeeds, and thus that the original goal
a2b([a,a,al, [b,b,b]).

is satisfied.

We could summarise this process as follows. Prolog startiéd two
lists. It peeled the head off each of them, and checked tleat where an
a and ab, respectively, as required. It then recursively analyded thils
of both lists. That is, it worked its way down both tails sittameously,
checking that at each stage the tails were headed by and ab. Why
did the process stop? Because at each recursive step we hagrko
with shorter lists (namely the tails of the lists examinedtla previous
step) and eventually we ended up with empty lists. At thisnpobur
rather trivial looking fact was able to play a vital role: iaid yes. This
halted the recursion, and ensured that the original quecgemrded.

It's is also important to think about what happens with geerihat
fail. For example, if we pose the query

a2b([a,a,a,a],[b,b,b]l).

Prolog will correctly say no. Why? because after carrying the
peel-off-the-head-and-recursively-examine-the-taibgess three times, it
will be left with the query

a2b([al, [1).
But this goal cannot be satisfied. And if we pose the query
a2b([a,c,a,al, [b,b,5,4]).

after carrying out the peel-off-the-head-and-recurgiedamine-the-tail
process once, Prolog will have the goal

a2b([c,a,al, [b,5,4]).

and again, this cannot be satisfied.

Well, that's how a2b/2 works in simple cases, but we haven't
exhausted its possibilities yet. As always with Prologs i good idea
to investigate what happens when variables as used as idmd. with
a2b/2 something interesting happens: it acts as a translatanslating
lists of as to lists of bs, and vice versa. For example the query

a2b([a,a,a,a]l ,X).
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yields the response
X = [b:b:b:b] .

That is, the list ofas has been translated to a list v§. Similarly, by
using a variable in the first argument position, we can use itréanslate
lists of bs to lists of as:

a2b(X, [b,b,b,b]).

X = [a,a,a,a]
And of course, we can use variables in both argument position
a2b(X,Y).

Can you work out what happens in this case?

To sum up:a2b/2 is an extremely simple example of a program that
works by recursing its way down a pair of lists. But don’t beold by
its simplicity: the kind of programming it illustrates is fidamental to
Prolog. Both its declarative form (a base clause dealindy whie empty
list, a recursive clause dealing with non-empty lists) ahd procedural
idea it trades on (do something to the heads, and then reelyrsio the
same thing to the tails) come up again and again in Prologranoging.
In fact, in the course of your Prolog career, you'll find thaduil write
what is essentially thea2b/2 predicate, or a more complex variant of
it, many times over in many different guises.

4 Exercises
Exercise 4.1. How does Prolog respond to the following queries?
1. [a,b,c,d] = [a,[b,c,d]].
. [a,b,c,d] = [al[b,c,d]].
. [a,b,c,d] = [a,b,[c,d]].

. [a,b,c,d] = [a,bl[c,d]].

. [a,b,c,d] = [a,b,c|[d]].

2
3
4
5. [a,b,c,d] = [a,b,c,[d]].
6
7. [a,b,c,d] = [a,b,c,d,[]].
8

. [a,b,c,d] = [a,b,c,d|[]].
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9. 001 = _.
10. [1 = [].
11. 11 = (1]

Exercise 4.2. Which of the following are syntactically correct lists? If
the representation is correct, how many elements does shendive?

[1102,3,4]]
[1,2,31[]]

[112,3,4]

(11 [21[31[4]11]]
[1,2,3,41[1]

(i

[[1,2]14]
[[1,2],[3,4]11[5,6,7]1]

@ N o o M w NP

Exercise 4.3. Write a predicatesecond(X,List) which checks
whetherX is the second element dfist.

Exercise 4.4. Write a predicateswap12(List1,List2) which checks
whetherList1 is identical toList2, except that the first two elements
are exchanged.

Exercise 4.5. Suppose we are given a knowledge base with the
following facts:

tran(eins,one).
tran(zwei,two).
tran(drei,three).
tran(vier,four).
tran(fuenf,five).
tran(sechs,six).
tran(sieben,seven).
tran(acht,eight).
tran(neun,nine).

Write a predicatelisttran(G,E) which translates a list of German
number words to the corresponding list of English numberdsorFor
example:
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listtran([eins,neun,zwei] ,X).
should give:
X = [one,nine,two].

Your program should also work in the other direction. For regke,
if you give it the query

listtran(X, [one,seven,six,two]).
it should return:
X = [eins,sieben,sechs,zwei].

(Hint: to answer this question, first ask yourself “How do artslate
the empty list of number words?”. That's the base case. For non-empty
lists, first translate the head of the list, then use recorsm translate
the tail.)

Exercise 4.6. Write a predicatetwice(In,0Out) whose left argument
is a list, and whose right argument is a list consisting ofrgwveement
in the left list written twice. For example, the query

twice([a,4,buggle] ,X).
should return
X = [a,a,4,4,buggle,buggle]).
And the query
twice([1,2,1,1],X).
should return
X=1[1,1,2,2,1,1,1,1].

(Hint: to answer this question, first ask yourself “What ddohappen
when the first argument is thempty list?”. That's the base case. For
non-empty lists, think about what you should do with the hemud use
recursion to handle the tail.)

Exercise 4.7. Draw the search trees for the following three queries:

7- member(a, [c,b,a,y]).
?- member (x, [a,b,c]).

?- member (X, [a,b,c]).

(Search trees were introduced in Chapter 2.)
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5 Practical Session

The purpose of Practical Session 4 is to help you get familih the
idea of recursing down lists. We first suggest some tracesyéor to
carry out, and then some programming exercises.

First, systematically carry out a number of traces aftb/2 to make
sure you fully understand how it works. In particular:

1. Trace some examples, not involving variables, that sdtceFor
example, trace the querg2b([a,a,a,al,[b,b,b,b]) and relate
the output to the discussion in the text.

2. Trace some simple examples that fail. Try examples innglv
lists of different lengths (such a2b([a,a,a,al,[b,b,b]))
and examples involving symbols other than and b (such as
a2b([a,c,a,al, [b,b,5,4])).

3. Trace some examples involving variables. For exampie tracing
a2b([a,a,a,a] ,X) and a2b(X, [b,b,b,b]).

4. Make sure you understand what happens when both argurrents
the query are variables. For example, carry out a trace on the
query a2b(X,Y).

5. Carry out a series of similar traces involvingsmber/2. That
is, carry out traces involving simple queries that succesdch
as member(a,[1,2,a,b])), simple queries that fail (such as
member(z, [1,2,a,b])), and queries involving variables (such
as member (X, [1,2,a,b])). In all cases, make sure that you
understand why the recursion halts.

Having done this, try the following.
1. Write a 3-place predicateombinel which takes three lists as

arguments and combines the elements of the first two lists timé
third as follows:

?- combinel([a,b,c],[1,2,3],X).
X = [a,1,b,2,c,3]
7- combinel ([f,b,yip,yup], [glu,gla,gli,glo] ,Result).

Result = [f,glu,b,gla,yip,gli,yup,glo]
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2. Now write a 3-place predicateombine2 which takes three lists
as arguments and combines the elements of the first two hsts i
the third as follows:

?- combine2([a,b,c],[1,2,3],X).
X = [[a,1],[b,2], [c,3]]
?7- combine2([f,b,yip,yup], [glu,gla,gli,glo] ,Result).

Result = [[f,glul,[b,glal, [yip,gli], [yup,glol]

3. Finally, write a 3-place predicateombine3 which takes three lists
as arguments and combines the elements of the first two hsts i
the third as follows:

?- combine3([a,b,c],[1,2,3],X).
X=[ja,1),j,2),j(c,3)]
7- combine3([f,b,yip,yup]l, [glu,gla,gli,glo] ,R).

R = [j(f,glu),j(b,gla),j(yip,gli),j(yup,glo)]

All three programs are pretty much the samea2b/2 (though they
manipulate three lists, not two). That is, all three can béttewr
by recursing down the lists, doing something to the headsl #en
recursively doing the same thing to the tails. Indeed, onoe have
written combinel, you just need to change what you do to the heads to
get combine2 and combine3.






Chapter 5

Arithmetic

;- )
This chapter has two main goals:
1. To introduce Prolog's built-in abilities for

performing arithmetic.

2. To apply them to simple list processing
problems, using accumulators.

- J
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1 Arithmetic in Prolog

Prolog provides a number of basic arithmetic tools for malaiping
integers (that is, numbers of the form ...-3, -2, -1, 0, 1, 243.). Most
Prolog implementation also provide tools for handling reaimbers (or
floating point numbers) such as 1.53 @35 x 10°, but we're not going
to discuss these, for they are not particularly useful foe gymbolic
processing tasks discussed in this book. Integers, on ther diand,
are useful in connection with symbolic tasks (we use themtébesthe
length of lists, for example) so it is important to understamow to
work with them. We’'ll start by looking at how Prolog handldsetfour
basic operations of addition, multiplication, subtracti@and division.

Arithmetic examples Prolog Notation
6+2=8 8 is 6+2.
6x2=12 12 is 6x%2.
6—2=14 4 is 6-2.
6—-8=-2 -2 is 6-8.
6+-2=3 3 is 6/2.
7T+2=3 3 is 7/2.

1 is the remainder when 7 is divided by 21 is mod(7,2).

Note that as we are working with integers, division gives w&kban
integer answer. Thug§ =2 gives 3 as an answer, leaving remainder 1.
Posing the following queries yields the following respaise

?7- 8 is 6+2.

yes

?7- 12 is 6%2.
yes

?- -2 is 6-8.
yes

?- 3 is 6/2.

yes

?- 1 is mod(7,2).
yes

More importantly, we can work out the answers to arithmetiesiions
by using variables. For example:
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7- X is 6+2.

X =28

7- X is 6%2.

X =12

?7- R is mod(7,2).
R=1

Moreover, we can use arithmetic operations when we defindiqgates.
Here’s a simple example. Let’'s define a predicatel_3_and_double/2
whose arguments are both integers. This predicate takdgsitsargument,
adds three to it, doubles the result, and returns the numbgined as
the second argument. We define this predicate as follows:

add_3_and_double(X,Y) :— Y is (X+3)*2.
And indeed, this works:

?- add_3_and_double(1,X).
X=28
?- add_3_and_double(2,X).

X =10

One other thing. Prolog understands the usual conventioasuse
for disambiguating arithmetical expressions. For exampleen we write
3+2x4 we mean3 + (2 x 4) and not(3+2) x 4, and Prolog knows
this convention:

?7- X is 3+2x%4.
X =11

2 A Closer Look

That's the basics, but we need to know more. The most impbtizan
grasp is this: +, *, -+ and mod do not carry out any arithmetic. In
fact, expressions such a%+2, 3-2 and 3*2 are simply terms. The
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functors of these terms are, - and * respectively, and the arguments
are 3 and 2. Apart from the fact that the functors go between their
arguments (instead of in front of them) these are ordinagldgr terms,
and unless we do something special, Prolog will not actudly any
arithmetic. In particular, if we pose the query

7- X = 3+2
we don’t get back the answet=5. Instead we get back

X = 3+2
yes

That is, Prolog has simply unified the variabfeto the complex term
3+2. It has not carried out any arithmetic. It has simply done what it
usually does whers/2 is used: performed unification.

Similarly, if we pose the query

7- 3+2%5 = X
we get the response

X = 3+2%5
yes

Again, Prolog has simply bound the variabke to the complex term
3+2*5. It did not evaluate this expression to 13.

To force Prolog to actually evaluate arithmetic expressiore have to
use

is

just as we did in our earlier examples. In fadg does something very
special: it sends a signal to Prolog that says “Hey! Don'tatiréhis
expression as an ordinary complex term! Call up your buil&rithmetic
capabilities and carry out the calculations!”

In short, is forces Prolog to act in an unusual way. Normally
Prolog is quite happy just unifying variables to structurdsat’s its job,
after all. Arithmetic is something extra that has been lblen to the
basic Prolog engine because it is useful. Unsurprisindlgre are some
restrictions on this extra ability, and we need to know whwayt are.

For a start, the arithmetic expressions to be evaluated ipeisin the
right hand side ofis. In our earlier examples we carefully posed the

query
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?7- X is 6+2.

X =28
which is the right way to do it. If instead we had asked
6+2 is X.

we would have got a message sayinghstantiation_error, oOr
something similar.

Moreover, although we are free to use variables on the rigrdh
side of is, when we actually carry out evaluation, the variable must
already have been instantiated to a variable-free ariiemetpression.
If the variable is uninstantiated, or if it is instantiated something
other than an integer, we will get some sort ifstantiation_error
message. This is because arithmetic isn't performed usihodpd’s usual
unification and knowledge base search mechanisms: it's dgnealling
up a special black box which knows about integer arithmetit.we
hand the black box the wrong kind of data, it's going to corpla

Here’'s an example. Recall our “add 3 and double it” predicate

add_3_and_double(X,Y) :- Y is (X+3)*2.

When we described this predicate, we carefully said thatiited 3 to its
first argument, doubled the result, and returned the answetsisecond
argument. For exampleadd_3_and_double(3,X) returnsX = 12. We
didn’t say anything about using this predicate in the rewedrection.
For example, we might hope that posing the query

7- add_3_and_double(X,12).

would return the answeX=3. But it doesn’t. Instead we get the
instantiation_error message. Why? Well, when we pose the query
this way round, we are asking Prolog to evaluage is (X+3)#*2, which
it can't do asX is not instantiated.

Two final remarks. As we've already mentioned, for Proldg+ 2
is just a term. In fact, for Prolog, it reallys the term +(3,2). The
expression3 + 2 is just a user-friendly notation that's nicer for us to
use. This means that, if you want to, you can give Prolog eselike

X is +(3,2)
and Prolog will correctly reply

X=5
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Actually, you can even given Prolog the query
7- is(X,+(3,2))

and Prolog will respond
X=5

This is because, for Prolog, the expressibnis +(3,2) really is the
term is(X,+(3,2)). The expressiork is +(3,2) is just user-friendly
notation. Underneath, as always, Prolog is just workingyawéh terms.

Summing up, arithmetic in Prolog is easy to use. Pretty muith a
you have to remember is to usies to force evaluation, that stuff to be
evaluated must go to the right afs, and to take care that any variables
are correctly instantiated. But there is a deeper point tkatworth
reflecting on: bolting on the extra capability to do arithimein this
way has further widened the gap between the procedural acldrdtve
meanings of Prolog programs.

3 Arithmetic and Lists

Probably the most important use of arithmetic in this bookastell us
useful facts about data-structures, such as lists. For gbeanit can be
useful to know how long a list is. We'll give some examples afing
lists together with arithmetic capabilities.

How long is a list? Here's a recursive definition.

1. The empty list has length zero.

2. A non-empty list has length 1 ten(T), wherelen(T) is the length
of its tail.

This definition is practically a Prolog program already. eélerthe
code we need:

len([],0).
len([_|T],N) :- len(T,X), N is X+1.

This predicate works in the expected way. For example:

?- len([a,b,c,d,e, [a,b],g],X).

X=17
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Now, this is quite a good program: it's easy to understand and
efficient. But there is another method of finding the length aoflist.
We'll now look at this alternative, because it introduce® tldea of
accumulators. If youre used to other programming langeageu're
probably used to the idea of using variables to hold inteiatedresults.

An accumulator is the Prolog analog of this idea.

Here’s how to use an accumulator to calculate the length d$ta We

shall define a predicataccLen/3 which takes the following arguments.

accLen(List,Acc,Length)

Here List is the list whose length we want to find, an@éngth is its
length (an integer). What aboutcc? This is the accumulator we will
use to keep track of intermediate values for length (so il wiko be
an integer). Here’'s what we do. When we call this predicate, ave
going to give Acc an initial value of 0. We then recursively work our
way down the list, addingl to Acc each time we find a head element,
until we reach the empty list. When we reach the empty listc will
contain the length of the list. Here’s the code:

acclen([_|T],A,L) :- Anew is A+1, acclen(T,Anew,L).
accLen([],A,A).

The base case of the definition, unifies the second and thinahaents.
Why? Because this trivial unification is a nice way of makingesthat
the result, that is, the length of the list, is returned. Whee reach
the end of the list, the accumulator (the second variablejtains the
length of the list. So we give this value (via unification) toeetlength
variable (the third variable). Here’'s an example trace. Yaan clearly
see how the length variable gets its value at the bottom ofrélcarsion
and passes it upwards as Prolog is coming out of the recursion

?- acclLen([a,b,c],0,L).
Call: (6) acclLen([a, b, c], 0, _G449) 7
Call: (7) _G518 is O+1 7
Exit: (7) 1 is 0+1 7
Call: (7) acclen([b, cl, 1, _G449) 7
Call: (8) _Gb21 is 1+1 7
Exit: (8) 2 is 141 7
Call: (8) acclLen([c], 2, _G449) 7
Call: (9) _Gb24 is 2+1 7
Exit: (9) 3 is 2+1 7
Call: (9) acclLen([], 3, _G449) ?
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Exit: (9) accLen([], 3, 3) ?

Exit: (8) acclLen([c], 2, 3) 7

Exit: (7) acclen([b, c], 1, 3) ?
Exit: (6) acclen([a, b, c], 0, 3) ?

As a final step, we’ll define a predicate which cascLen for us,
and gives it the initial value of O:

leng(List,Length) :- accLen(List,0,Length).
So now we can pose queries like this:
?7- leng([a,b,c,d,e, [a,b],gl,X).

Accumulators are extremely common in Prolog programs. (Wee
another accumulator based program in this chapter, and soore in
later chapters.) But why is this? In what way #cLen better than
len? After all, it looks more difficult. The answer is thatcLen is tail
recursive whilelen is not. In tail recursive programs, the result is fully
calculated once we reached the bottom of the recursion astchps to be
passed up. In recursive programs which are not tail receirgivere are
goals at other levels of recursion which have to wait for theveer from
a lower level of recursion before they can be evaluated. Tderstand
this, compare the traces for the queriescLen([a,b,c],0,L) (see
above) andlen([a,b,c],0,L) (given below). In the first case the
result is built while going into the recursion — once the boit is
reached ataccLen([],3,_G449), the result is there and only has to be
passed up. In the second case the result is built while coroimgof
the recursion; the result ofen([b,c], _G481), for instance, is only
computed after the recursive call dfen has been completed and the
result of len([c],_G489) is known. In short, tail recursive programs
have less bookkeeping overhead, and this makes them moceemffi

?- len([a,b,c],L).
Call: (6) len([a, b, c], _G418) 7
Call: (7) len([b, c], _G481) 7
Call: (8) len([c]l, _G486) 7
Call: (9) len([], _G489) 7
Exit: (9) len([], 0) ?
Call: (9) _G486 is 0+1 7
Exit: (9) 1 is 0+1 ?
Exit: (8) len([c], 1) 7
Call: (8) _G481 is 1+1 7
Exit: (8) 2 is 1+1 7
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Exit: (7) len([b, c], 2) ?
Call: (7) _G418 is 2+1 7
Exit: (7) 3 is 2+1 7

Exit: (6) len([a, b, c], 3) ?

4 Comparing Integers

97

Some Prolog arithmetic predicates actually do carry outhiétic all

by themselves (that is, without the assistance iej.
operators that compare integers.

Arithmetic examples Prolog Notation
<y
z<y
=Y
TFY
x>y
x>y

P4Dd D4 D

These operators have the obvious meaning:

7- 2 < 4.
yes

yes

?7- 4=\=5.
yes

7- 4=\=4.
no

7- 4 >= 4.
yes

-4 > 2.
yes

These are the
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Moreover, they force both their right hand and left hand argaots to
be evaluated:

7- 2 < 4+1.
yes

7- 2+1 < 4.
yes

7- 241 < 3+2.
yes

Note that=:

is different from =, as the following examples show:

?- 4=4.
yes

7- 242 =4,
no

7- 242 =:= 4.
yes

That is, = tries to unify its arguments; it doesot force arithmetic
evaluation. That's=:=s job.

Whenever we use these operators, we have to take care that any
variables are instantiated. For example, all the followgqugries lead to
instantiation errors.

?7- X < 3.
7- 3 <Y.
7- X =:=X.
Moreover, variables have to be instantiatedinitegers The query
7-X =23, X< 4.
succeeds. But the query
7-X=Db, X< 4.

fails.
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Ok, let's now look at an example which puts Prolog’s abiiti¢o
compare numbers to work. We're going to define a predicatechwhi
takes a non-empty list of non-negative integers as its firguraent, and
returns the maximum integer in the list as its last arguméwgfain, we’ll
use an accumulator. As we work our way down the list, the actator
will keep track of the highest integer found so far. If we findhimher
value, the accumulator will be updated to this new value. Whe call
the program, we set the accumulator to an initial value of O.

Here’s the code. Note that there ameo recursive clauses:

accMax([H|T],A,Max) :-
H> A,
accMax(T,H,Max) .

accMax([H|T],A,Max) :-
H=<A,
accMax(T,A,Max) .

accMax([]1,A,4).

The first clause tests if the head of the list is larger than lHrgest

value found so far. If it is, we set the accumulator to this nealue,

and then recursively work through the tail of the list. Thew® clause
applies when the head is less than or equal to the accumulator
this case we recursively work through the tail of the listngsithe old

accumulator value. Finally, the base clause unifies the nse@nd third

arguments; it gives the highest value we found while goinguph the

list to the last argument.

Here's an example query:

?- accMax([1,0,5,4],0,Max).
Here the first clause ofccMax applies, resulting in the following goal:
?- accMax([0,5,4],1,Max).

Note the value of the accumulator has changed to 1. Now thensgec
clause ofaccMax applies, as 0 (the next element of the list) is smaller
than 1, the value of the accumulator. This process is repeaigil we
reach the empty list:

?7- accMax([5,4],1,Max).
?- accMax([4],5,Max).

?- accMax([],5,Max).
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Now the third clause applies, unifying the varialiex with the value
of the accumulator:

Max = 5.
yes

Again, it's nice to define a predicate which calls this, andiahises
the accumulator. But wait: what should we initialise the tanalator to?
If you say O, this means you are assuming that all the numberthe
list are positive. But suppose we give a list of negative gets as
input. Then we would have

?- accMax([-11,-2,-7,-4,-12],0,Max) .

Max = 0
yes

This is not what we want: the biggest number on the list is -2. Our
use of 0 as the initial value of the accumulator has ruinedygving,
because it's bigger than any number on the list.

There's an easy way around this: since our input list will ale be a
non-empty list of integers, simply initialise the accumatato the head
of the list. That way we guarantee that the accumulator igalised to
a number on the list. The following predicate does this for us

max(List,Max) :-
List = [HI_],
accMax(List,H,Max) .

So we can simply say:

max([1,2,46,53,0],X).

X =53
yes

And furthermore we have:

max([-11,-2,-7,-4,-12] ,X).
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5 Exercises

Exercise 5.1. How does Prolog respond to the following queries?

1.
2.

10.
11.
12.
13.
14.
15.
16.

© © N o 0 &~ W

X = 3%4.

X is 3%4.

4 is X.
X=Y.

3 is 1+2.

3 is +(1,2).
3 is X+2.

X is 1+2.

. 1+2 is 142,

is(X,+(1,2)).

3+2 = +(3,2).

*(7,5) = 7%5.
*(7,+(3,2)) = 7T%(3+2).
*(7,(3+2)) = 7*(3+2).
T#3+2 = *(7,+(3,2)).

*(7,(3+42)) = 7*%(+(3,2)).

Exercise 5.2.

1.

Define a 2-place predicaténcrement that holds only when its
second argument is an integer one larger than its first argume
For example,increment (4,5) should hold, butincrement (4,6)
should not.

. Define a 3-place predicateum that holds only when its third

argument is the sum of the first two arguments. For example,
sum(4,5,9) should hold, butsum(4,6,12) should not.
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Exercise 5.3. Write a predicateaddone/2 whose first argument is a list
of integers, and whose second argument is the list of insegbtained
by adding 1 to each integer in the first list. For example, theryg

?- addone([1,2,7,2],X).
should give

X = [2,3,8,3].

6 Practical Session

The purpose of Practical Session 5 is to help you get famihidgth
Prolog’s arithmetic capabilities, and to give you some Hart practice in
list manipulation. To this end, we suggest the following graonming
exercises:

1. In the text we discussed the 3-place predicate:Max which
returned the maximum of a list of integers. By changing theeco
slightly, turn this into a 3-place predicateccMin which returns
the minimum of a list of integers.

2. In mathematics, an n-dimensional vector is a list of numbef
length n. For example[2,5,12] is a 3-dimensional vector, and
[45,27,3,-4,6] is a 5-dimensional vector. One of the basic
operations on vectors iscalar multiplication In this operation,
every element of a vector is multiplied by some number. For
example, if we scalar multiply the 3-dimensional vectt#,7,4]
by 3 the result is the 3-dimensional vectd6,21,12].

Write a 3-place predicatescalarMult whose first argument is
an integer, whose second argument is a list of integers, and
whose third argument is the result of scalar multiplying #ezond
argument by the first. For example, the query

?7- scalarMult(3,[2,7,4] ,Result).
should yield
Result = [6,21,12]

3. Another fundamental operation on vectors is th@ product This
operation combines two vectors of the same dimension anidsyie
a number as a result. The operation is carried out as follows:
the corresponding elements of the two vectors are multiplend
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the results added. For example, the dot product[®f5,6] and
[3,4,1] is 6+20+6, that is, 32. Write a 3-place predicatelot
whose first argument is a list of integers, whose second aggtum
is a list of integers of the same length as the first, and whose
third argument is the dot product of the first argument witle th
second. For example, the query

?- dot([2,5,6],[3,4,1],Result).
should yield

Result = 32






Chapter 6

More Lists

-

This chapter has two main goals:

~

1. To define append/3, a predicate for concate-
nating two lists, and illustrate what can be
done with it.

2. To discuss two ways of reversing a list: a
naive method using append/3, and a more
efficient method using accumulators.

J
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1 Append

We shall define an important predicatppend/3 whose arguments are
all lists. Viewed declarativelyappend(L1,L2,L3) will hold when the

list L3 is the result of concatenating the listst and L2 together

(concatenating means joining the lists together, end tg.eRdr example,

if we pose the query

7- append([a,b:C],[1,2:3],[a,b:C:1,2,3])-
or the query

?- append([a, [foo,gibble],c],[1,2,[[],p]],
[a, [foo,gibble],c,1,2,[[]1,b]).

we will get the response yes. On the other hand, if we pose tleyq
?- append([a,b,c],[1,2,3],[a,b,c,1,2]).

or the query
?- append([a,b,c],[1,2,3],[1,2,3,a,b,c]).

we will get the answer no.

From a procedural perspective, the most obvious usepplend/3 is
to concatenate two lists together. We can do this simply bygua
variable as the third argument: the query

?- append([a,b,c],[1,2,3],L3).
yields the response

L3 = [a,b,c,1,2,3]
yes

But (as we shall soon see) we can also uggend/3 to split up
a list. In fact, append/3 is a real workhorse. There's lots we can do
with it, and studying it is a good way to gain a better underdiag of
list processing in Prolog.

Defining append

Here's how append/3 is defined:

append([1,L,L).
append([H|T],L2,[HIL3]) :- append(T,L2,L3).
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This is a recursive definition. The base case simply says that
appending the empty list to any list whatsoever vyields thames list,
which is obviously true.

But what about the recursive step? This says that when weatemate
a non-empty list[H|T] with a list L2, we end up with the list whose
head isH and whose tail is the result of concatenatingwith L2. It
may be useful to think about this definition pictorially:

lnput: [H | [ T J1+[ L2 |

Result: [ H | ]
—_——
[Th{L2]

But what is the procedural meaning of this definition?  What
actually goes on when we usgppend/3 to glue two lists together?
Let's take a detailed look at what happens when we pose theyque
?- append([a,b,c],[1,2,3],X).

When we pose this query, Prolog will match it to the head of the
recursive rule, generating a new internal variable (s&p18) in the
process. If we carried out a trace of what happens next, weldvget
something like the following:

append([a, b, c], [1, 2, 3], _G518)

append([b, cl, [1, 2, 3], _G587)

append([c], [1, 2, 3], _G590)

append([1, [1, 2, 3], _G593)

append([1, [1, 2, 3], [1, 2, 3])

append([c], [1, 2, 31, [c, 1, 2, 31D

append([b, c], [1, 2, 3], [b, ¢, 1, 2, 3])
append([a, b, ¢], [1, 2, 3], [a, b, c, 1, 2, 3])

X=1[a, b, c, 1, 2, 3]
yes

The basic pattern should be clear: in the first four lines we gt
Prolog recurses its way down the list in its first argumentiluibtcan
apply the base case of the recursive definition. Then, as é&x¢ four
lines show, it then stepwise ‘fills in’ the result. How is thidling in’
process carried out? By successively instantiating theabims _G593,
_G590, _G587, and _G518. But while it's important to grasp this
basic pattern, it doesn't tell us all we need to know about ey
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append/3 works, so let's dig deeper. Here is the search tree for the
query append([a,b,c],[1,2,3]1,X). We'll work carefully through all
the steps, making a careful note of what our goals are, and W
variables are instantiated to.

| ?- append([a,b,c],[1,2,3],.G518) |

G518 = [al|_G587]

|?— append([b,c],[1,2,3],_G587)|

G587 = [b|_G590]
G518 = [a,b|_G590]

|?— append([c],[1,2,3],_G590)|

G590 = [c|_G593]
G587 = [b,c|_G593]
_G518 = [a,b,c|_G593]

?- append([],[1,2,3],.G593)

G593 = [1,2,3]

G590 = [c,1,2,3]
G587 = [b,c,1,2,3]
G518 = [a,b,c,1,2,3]

1. Goal 1:append([a,b,c],[1,2,3],_G518). Prolog matches this to
the head of the recursive rule (that igpend ([H|T],L2, [HIL3])).
Thus _G518 is unified to [a|L3], and Prolog has the new goal
append([b,c], [1,2,3],L3). It generates a new variableG587
for L3, thus we have thatG518 = [a|_G587].

2. Goal 2: append([b,c],[1,2,3],_G587). Prolog matches this to
the head of the recursive rule, thus587 is unified to [b|L3],
and Prolog has the new goadppend([c],[1,2,3],L3). It
generates the internal variablez590 for L3, thus we have that
_G587 = [bl|_G590].
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3. Goal 3: append([c],[1,2,3],_G590). Prolog matches this to
the head of the recursive rule, thus590 is unified to [c|L3],
and Prolog has the new goahppend([],([1,2,3],L3). It
generates the internal variablez593 for L3, thus we have that
_G590 = [c|_G593].

. Goal 4: append([],[1,2,3],_G593). At last: Prolog can use the
base clause (that isppend([1,L,L)). And in the four successive
matching steps, Prolog will obtain answers to Goal 4, Goal 3,
Goal 2, and Goal 1. Here’s how.

. Answer to Goal 4:append([],[1,2,3],[1,2,3]). This is because
when we match Goal 4 (that isppend([1,[1,2,3],_G593) to
the base clause,G593 is unified to [1,2,3].

. Answer to Goal 3: append([c],[1,2,3],[c,1,2,3]). Why?
Because Goal 3 imppend([c],[1,2,3],_G590]), and _G590 is
the list [c|_G593], and we have just unifiedG593 to [1,2,3].
So _G590 is unified to [c,1,2,3].

. Answer to Goal 2:append([b,c],[1,2,3],[b,c,1,2,3]). Why?
Because Goal 2 isppend([b,c],[1,2,3],_G587]), and _G587
is the list [bl_G590], and we have just unified_G590 to
[c,1,2,3]. So _G587 is unified to [b,c,1,2,3].

. Answer to Goal 1. append([a,b,c],[1,2,3],[b,c,1,2,3]).
Why? Because Goal 2 isppend([a,b,c],[1,2,3],_G518]),
and _G518 is the list [a|_G587], and we have just unifiedG587
to [b,c,1,2,3]. So _G518 is unified to [a,b,c,1,2,3].

. Thus Prolog now knows how to instantiake the original query
variable. It tells us tha®X = [a,b,c,1,2,3], which is what we
want.

Work through this example carefully, and make sure you fully

understand the pattern of variable instantiations, namely

_G518 = [a]_G587]
fal [b|_G590]]
fal (bl [c_G59311]

This type of pattern lies at the heart of the wappend/3 works.
Moreover, it illustrates a more general theme: the use ofiaation to
build structure. In a nutshell, the recursive calls dppend/3 build up
this nested pattern of variables which code up the requiresvar. When
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Prolog finally instantiates the innermost variahl6593 to [1, 2, 3],
the answer crystallises out, like a snowflake forming aroandrain of
dust. But it is unification, not magic, that produces the ltesu

Using append
Now that we understand howppend/3 works, let's see how we can
put it to work.

One important use ofappend/3 is to split up a list into two
consecutive lists. For example:

?- append(X,Y, [a,b,c,d]).

X =1

Y = [a,b,c,d] ;
X = [a]

Y = [b,c,d] ;
X = [a,b]

Y = [c,d] ;

X = [a,b,c]

Y = [d] ;

X = [a,b,c,d]
Y=101;

no

That is, we give the list we want to split up (hgeeb,c,d]) to
append/3 as the third argument, and we use variables for the first two
arguments. Prolog then searches for ways of instantiatiegvariables to
two lists that concatenate to give the third argument, thplgtiag up the
list in two. Moreover, as this example shows, by backtragkiRrolog
can find all possible ways of splitting up a list into two cotiséve lists.

This ability means it is easy to define some useful predicatgh
append/3. Let's consider some examples. First, we can define a
program which finds prefixes of lists. For example, the presfixad
[a,b,c,d] are [], [al], [a,b]l, [a,b,c], and [a,b,c,d]. With the
help of append/3 it is straightforward to define a programrefix/2,
whose arguments are both lists, such thatfix(P,L) will hold when
P is a prefix of L. Here's how:
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prefix(P,L) :- append(P,_,L).

This says that listP is a prefix of list L when there is some list
such thatL is the result of concatenating with that list. (We use the
anonymous variable since we don’t care what that other distwie only
care that there is some such list or other.) This predicatzessfully
finds prefixes of lists, and moreover, via backtracking, fitlosm all:

7- prefix(X, [a,b,c,d]).

X=1[;

X = [a] ;

X = [a,b] ;

X = [a,b,c] ;
X = [a,b,c,d] ;
no

In a similar fashion, we can define a program which finds sudfixe
of lists. For example, the suffixes ofa,b,c,d] are [1, [d], [c,d],
[b,c,d], and [a,b,c,d]. Again, using append/3 it is easy to
define suffix/2, a predicate whose arguments are both lists, such that
suffix(S,L) will hold when S is a suffix of L:

suffix(S,L) :- append(_,S,L).

That is, list S is a suffix of listL if there is some list such that is
the result of concatenating that list with This predicate successfully
finds suffixes of lists, and moreover, via backtracking, fitklem all:

?- suffix (X, [a,b,c,d]).

X = [a,b,c,d] ;
X = [b,c,d] ;
X = [c,d] ;

X = [d] ;
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no

Make sure you understand why the results come out in thisrorde

And now it's very easy to define a program that finds sublists of
lists. The sublists of[a,b,c,d] are [], [al], [bl, [c], [d], [a,b],
(b,cl, [c,dl, [a,b,c], [b,c,d]l, and [a,b,c,d]. A little thought
reveals that the sublists of a list L are simply theefixes of suffixes of
L. Think about it pictorially:

Take suffix:|a,b,c,de, f,g,h,i,5,k,l,m,n,o,p

Take prefix: h,i,7,k,l,m,n,o0,p
——

Result:

As we already have defined the predicates for producing ssffand
prefixes of lists, we simply define a sublist as:

sublist(SubL,L):- suffix(S,L), prefix(SubL,S).

That is, SubL is a sublist ofL if there is some suffixs of L of which
SubL is a prefix. This program doesnéxplicitly use append/3, but of
course, under the surface, that's what's doing the work fer as both
prefix/2 and suffix/2 are defined usingippend/3.

2 Reversing a List

The append/3 predicate is useful, and it is important to know how to
put it to work. But it is just as important to know that it can lse
source of inefficiency, and that you probably don’'t want t@ utsall the
time.

Why is append/3 a source of inefficiency? If you think about the
way it works, you'll notice a weaknessippend/3 doesn’t join two lists
in one simple action. Rather, it needs to work its way down fitst
argument until it finds the end of the list, and only then carcatry
out the concatenation.

Now, often this causes no problems. For example, if we have tw
lists and we just want to concatenate them, it's probably toot bad.
Sure, Prolog will need to work down the length of the first,libut if
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the list is not too long, that's probably not too high a price gay for
the ease of working witheppend/3.

But matters may be very different if the first two arguments given
as variables. As we've just seen, it can be very useful to gpgend/3
variables in its first two arguments, for this lets Prologrebafor ways
of splitting up the lists. But there is a price to pay: a lot @arching
is going on, and this can lead to very inefficient programs.

To illustrate this, we shall examine the problem of revegsi list.
That is, we will examine the problem of defining a predicateicvh
takes a list (say[a,b,c,d]) as input and returns a list containing the
same elements in the reverse order (hédgc,b,al).

Now, a reverse predicate is a useful predicate to have arouksl
you will have realised by now, lists in Prolog are far easieraccess
from the front than from the back. For example, to pull out tiead of
a list L, all we have to do is perform the unificatiofH|_] = L; this
results in H being instantiated to the head af But pulling out the
last element of an arbitrary list is harder: we can’t do it giynusing
unification. On the other hand, if we had a predicate whicherssd
lists, we could first reverse the input list, and then pull the head of
the reversed list, as this would give us the last element ef dhiginal
list. So a reverse predicate could be a useful tool. Howeagrwe may
have to reverse large lists, we would like this tool to be &ffit So
we need to think about the problem carefully.

And that's what we’re going to do now. We will define two rewers
predicates: a naive one, defined with the helpappend/3, and a more
efficient (and indeed, more natural) one defined using actators.

Naive reverse using append
Here’s a recursive definition of what is involved in revegsia list:

1. If we reverse the empty list, we obtain the empty list.

2. If we reverse the listfH|T], we end up with the list obtained by
reversingT and concatenating witHH].

To see that the recursive clause is correct, consider thel[disb,c,d].
If we reverse the tail of this list we obtaifid,c,b]. Concatenating this
with [a] yields [d,c,b,al, which is the reverse ofa,b,c,d].

With the help ofappend/3 it is easy to turn this recursive definition
into Prolog:

naiverev([],[1).
naiverev([H|T],R) :- naiverev(T,RevT), append(RevT, [H],R).
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Now, this definition is correct, but it does an awful lot of Worlt is
very instructive to look at a trace of this program. This showst it
program is spending a lot of time carrying out appends. Thisukn’t
be too surprising: after, all, we are callingppend/3 recursively. The
result is very inefficient (if you run a trace, you will find th& takes
about 90 steps to reverse an eight element list) and hard derstand
(the predicate spends most of its time in the recursive tallsppend/3,
making it very hard to see what is going on).

Not nice. But as we shall now see, thasa better way.

Reverse using an accumulator

The better way is to use an accumulator. The underlying ideaimple
and natural. Our accumulator will be a list, and when we sitamyill

be empty. Suppose we want to reverfe,b,c,d]. At the start, our
accumulator will be[]. So we simply take the head of the list we are
trying to reverse and add it as the head of the accumulator. thia
carry on processing the tail, thus we are faced with the tdskewersing
[b,c,d], and our accumulator ifal. Again we take the head of the
list we are trying to reverse and add it as the head of the aglzuan
(thus our new accumulator i§b,al) and carry on trying to reverse
[c,d]. Again we use the same idea, so we get a new accumulator
[c,b,al, and try to reverse[d]. Needless to say, the next step yields
an accumulator[d,c,b,a] and the new goal of trying to reversgl.
This is where the process stopsand our accumulator contains the
reversed list we want To summarise: the idea is simply to work our
way through the list we want to reverse, and push each eleinenirn
onto the head of the accumulator, like this:

List: [a,b,c,d] Accumulator: []
List: [b,c,d] Accumulator: [a]

List: [c,d] Accumulator: [b,al]
List: [d] Accumulator: [c,b,al
List: [] Accumulator: [d,c,b,al

This will be efficient because we simply blast our way throubk list
once: we don’t have to waste time carrying out concatenatiorother
irrelevant work.

It's also easy to put this idea in Prolog. Here's the accutoulaode:

accRev([H|T],A,R):- accRev (T, [H|A],R).
accRev([],A,A).

This is classic accumulator code: it follows the same pattas the
arithmetic examples we examined in the previous chaptee fEtursive
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clause is responsible for chopping off the head of the ingst land
pushing it onto the accumulator. The base case halts therggmgand
copies the accumulator to the final argument.

As is usual with accumulator code, its a good idea to write a
predicate which carries out the required initialisation tbé accumulator
for us:

rev(L,R) :- accRev(L, [],R).

Again, it is instructive to run some traces on this progrand an
compare it withnaiverev/2. The accumulator based version dtearly
better. For example, it takes about 20 steps to reverse drt elgment
list, as opposed to 90 for the naive version. Moreover, tlaeetris far
easier to follow. The idea underlying the accumulator basgersion is
simpler and more natural than the recursive callsappend/3.

Summing up,append/3 is a useful program, and you certainly should
not be scared of using it. However, you also need to be awarkiths
a source of inefficiency, so when you use it, ask yourself hdrethere
is a better way. And often there is. The use of accumulatorsftien
better, and (as theev/2 example show) accumulators can be a natural
way of handling list processing tasks.

3 Exercises

Exercise 6.1. Let's call a list doubled if it is made of two
consecutive blocks of elements that are exactly the same.ekample,
[a,b,c,a,b,c] is doubled (its made up off[a,b,c] followed by

[a,b,c]) and so is [foo,gubble,foo,gubble]. On the other hand,
[foo,gubble,foo] is not doubled. Write a predicat@oubled(List)

which succeeds whenist is a doubled list.

Exercise 6.2. A palindrome is a word or phrase that spells the same
forwards and backwards. For example, ‘rotator’, ‘eve’, dndrses run’

are all palindromes. Write a predicapalindrome (List), which checks
whetherList is a palindrome. For example, to the queries

?- palindrome([r,o0,t,a,t,0,r]).

?- palindrome([n,u,r,s,e,s,r,u,n]).
Prolog should respond yes, but to the query

7- palindrome([n,o0,t,h,i,s]).



116 Learn Prolog Now!

it should respond no.

Exercise 6.3. Write a predicatetoptail(InList,OutList) which
says no ifInList is a list containing fewer than 2 elements, and which
deletes the first and the last elements Iaf.ist and returns the result
as OutList, when InList is a list containing at least 2 elements. For
example:

toptail([al,T).
no

toptail([a,b],T).
T=[]

toptail([a,b,c],T).
T=[b]

(Hint: here’s whereappend/3 comes in useful.)

Exercise 6.4. Write a predicatelast (List,X) which is true only
when List is a list that contains at least one element a&nds the last
element of that list. Do this in two different ways:

1. Define last/2 using the predicaterev/2 discussed in the text.

2. Define 1ast/2 using recursion.

Exercise 6.5. Write a predicateswapfl(List1,List2) which checks
whether List1 is identical to List2, except that the first and last
elements are exchanged. Here's whefgend/3 could come in useful
again, but it is also possible to write a recursive definitiaithout
appealing toappend/3 (or any other) predicates.

Exercise 6.6. Here is an exercise for those of you who like logic
puzzles.

There is a street with three neighbouring houses that alle hav
different colour, namely red, blue, and green. People ofediht
nationalities live in the different houses and they all haveifferent pet.
Here are some more facts about them:

e The Englishman lives in the red house.

The jaguar is the pet of the Spanish family.

The Japanese lives to the right of the snail keeper.

The snail keeper lives to the left of the blue house.
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Who keeps the zebra? Don't work it out for yourself: define adjprate
zebra/1 that tells you the nationality of the owner of the zebral!

(Hint: Think of a representation for the houses and the str&»de
the four constraints in Prolog. You may fintkmber/2 and sublist/2
useful.)

4 Practical Session

The purpose of Practical Session 6 is to help you get more riexmpe
with list manipulation. We first suggest some traces for youctrry
out, and then some programming exercises.

The following traces will help you get to grips with the predglies
discussed in the text:

1. Carry out traces ofappend/3 with the first two arguments
instantiated, and the third argument uninstantiated. Bamgle,
append([a,b,c], [[1,[2,3],b],X) Make sure the basic pattern
is clear.

2. Next, carry out traces oappend/3 as used to split up a list, that is,
with the first two arguments given as variables, and the lagiraent
instantiated. For exampleyppend (L,R, [foo,wee,blupl).

3. Carry out some traces oprefix/2 and suffix/2. Why does
prefix/2 find shorter lists first, anduffix/2 longer lists first?

4. Carry out some traces asublist/2. As we said in the text, via
backtracking this predicate generates all possible gablisut as
you'll see, it generates several sublists more than once. yDwo
understand why?

5. Carry out traces on bothaiverev/2 and rev/2, and compare
their behaviour.

Now for some programming work:

1. It is possible to write a one line definition of thember predicate
by making use ofappend/3. Do so. How does this new version
of member compare in efficiency with the standard one?

2. Write a predicateset (InList,OutList) which takes as input an
arbitrary list, and returns a list in which each element & thput
list appears only once. For example, the query

set([2,2,fo0,1,foo, [1,[11,X).
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should yield the result

X = [2,fo0,1,[]1].

(Hint: use themember predicate to test for repetitions of items
you have already found.)

. We ‘flatten’ a list by removing all the square brackets abwany

lists it contains as elements, and around any lists thatl@éments
contain as elements, and so on, for all nested lists. For pbeam
when we flatten the list

[a,b, [c,d], [[1,2]],fo0]
we get the list

[a,b,c,d,1,2,fo0]
and when we flatten the list

la,b, [[CCCCCc,d111111], [[1,2]1],f00, [1]
we also get

(a,b,c,d,1,2,fo0].

Write a predicateflatten(List,Flat) that holds when the first
argumentList flattens to the second argumeFitat. This should
be done without making use cfppend/3.

Ok, we're now halfway through the book. And flattening a listthe
Pons Asinorum of Prolog programming. Did you cross it ok? d¢f s
great. Time to move on.



Chapter 7

Definite Clause Grammars

4 )

This chapter has two main goals:

1. To introduce context free grammars (CFGs)
and some related concepts.

2. To introduce definite clause grammars
(DCGs), a built-in  Prolog mechanism for
working with context free grammars (and
other kinds of grammar too).

- J
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1 Context Free Grammars

Prolog has been used for many purposes, but its inventor,inAla
Colmerauer, was interested in computational linguistarsd this remains
a classic application for the language. Moreover, Proldgrefa number
of tools which make life easier for computational lingujstsxd we are
now going to start learning about one of the most useful ofséhe
definite clause grammars, or DCGs as they are usually called.

DCGs are a special notation for defining grammars. So, bef@ego
any further, we'd better learn what a grammar is. We shall dobyg
discussing context free grammars (or CFGs). The basic ideeowtext
free grammars is simple to understand, but don't be fooleéd thinking
that CFGs are toys. Theyre not. While CFGs aren’t powerfnbiegh
to cope with the syntactic structure of all natural langsa@bat is, the
kind of languages that human beings use), they can certamhgle most
aspects of the syntax of many natural languages (for exantpiglish
and French) in a reasonably natural way.

So what is a context free grammar? In essence, a finite doltect
of rules which tell us that certain sentences are grammafitat is,
syntactically correct) and what their grammatical struetwactually is.
Here’s a simple context free grammar for a small fragment o§lish:

S —> np Vvp
np -> det n
vp -> v np
vp -> V

det -> a
det -> the
n —-> woman
n -> man

v -> shoots

What are the ingredients of this little grammar? Well, firgiten that
it contains three types of symbol. There’s, which is used to define
the rules. Then there are the symbols written like this:np, vp, det,
n, v. These symbols are called non-terminal symbols; we’ll séearn
why. Each of these symbols has a traditional meaning in Isigs: s
is short for sentencenp is short for noun phraseyp is short for verb
phrase, andiet is short for determiner. That is, each of these symbols
is shorthand for a grammatical category. Finally there dre $ymbols
in italics: a, the, woman, manand shoots These are terminal symbols,
though a computer scientist might call them the alphabetl lamuists
might call them lexical items. We’'ll usually just call themovds.
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This grammar contains nine context free rules. A contexe frale
consists of a single non-terminal symbol, followed by, followed by a
finite sequence made up of terminal and/or non-terminal sysnb All
nine items listed above have this form, so they are all legite context
free rules. What do these rules mean? They tell us how differe
grammatical categories can be built up. Read as can consist qf or
can be built out of For example, the first rule tells us that a sentence
can consist of a noun phrase followed by a verb phrase. Thd thie
tells us that a verb phrase can consist of a verb followed byoann
phrase, while the fourth rule tells us that there is anothay wo build
a verb phrase: simply use a verb. The last five rules tell us @hand
the are determiners, thanan and woman are nouns, and thathootsis
a verb.

Now consider the string of wordss woman shoots a manls this
grammatical according to our little grammar? And if it is, athstructure
does it have? The following tree answers both questions:

np/S\vp

/ N\ RN
det n v np
| | | / \
a woman shoots det n
|
a man

Right at the top we have a node marked This node has two
daughters, one markedp, and one markedrp. Note that this part of
the diagram agrees with the first rule of the grammar, whicys Shat
an s can be built out of amp and avp. (A linguist would say that
this part of the tree is licensed by the first rule.) In fact, yemu can
see, every part of the tree is licensed by one of our rules. For example,
the two nodes markedp are licensed by the rule that says that an
np can consist of adet followed by ann. And, right at the bottom
of the diagram, all the words im woman shoots a maare licensed
by a rule. Incidentally, note that the terminal symbols omlgcorate
the nodes right at the bottom of the tree (the terminal nodesie
non-terminal symbols only decorate nodes that are highemuthe tree
(the non-terminal nodes).
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Such a tree is called a parse tree. Parse trees are impoeaatide
they give us two kinds of information. Firstly, they give usfdrmation
about strings. Secondly, they give us information abouicstrre. This is
an important distinction to grasp, so let's have a closek,cand learn
some important terminology while we are doing so.

First, if we are given a string of words, and a grammar, anduing
out that wecan build a parse tree like the one above (that is, a tree
that hass at the top node, and every node in the tree is licensed by
the grammar, and the string of words we were given is listedthia
correct order along the terminal nodes) then we say that ttiegsis
grammatical (according to the given grammar). For examffle, string
a woman shoots a mais grammatical according to our little grammar
(and indeed, any reasonable grammar of English would &astias
grammatical). On the other hand, if there isn’t any such,ttbe string
is ungrammatical (according to the given grammar). For etamthe
string woman a woman man a shoois ungrammatical according to our
litle grammar (and any reasonable grammar of English watligssify
it as ungrammatical). The language generated by a grammaist® of
all the strings that the grammar classifies as grammaticat. dxample,

a woman shoots a maalso belongs to the language generated by our
litle grammar, and so doea man shoots the womanA context free
recogniser is a program which correctly tells us whether atr a string
belongs to the language generated by a context free granfoaput it
another way, a recogniser is a program that correctly dlassstrings as
grammatical or ungrammatical (relative to some grammar).

But often, in both linguistics and computer science, we am n
merely interested in whether a string is grammatical or ne¢ also
want to know why it is grammatical. More precisely, we often want
to know what its structure is, and this is exactly the infotiora a
parse tree gives us. For example, the above parse tree sheviw
the words ina woman shoots a mafit together, piece by piece, to
form the sentence. This kind of information would be impottd we
were using this sentence in some application and neededytavkat it
actually meant (that is, if we wanted to do semantics). A esnfree
parser is a program which correctly decides whether a sthetpngs
to the language generated by a context free gramamat also tells us
what its structure is That is, whereas a recogniser merely says “Yes,
grammatical” or “No, ungrammatical” to each string, a parsetually
builds the associated parse tree and gives it to us.
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It remains to explain one final concept, namely what a confeeg
language is. (Don’t get confused: we've told you what a cxinfeee
grammar is, but not what a context freanguageis.) Quite simply, a
context free language is a language that can be generated dontaxt
free grammar. Some languages are context free, and someoard-or
example, it seems plausible that English is a context freaguage. That
is, it is probably possible to write a context free grammaat thenerates
all (and only) the sentences that native speakers find aadgept On
the other hand, some dialects of Swiss-German ravecontext free. It
can be proved mathematically that no context free grammargemerate
all (and only) the sentences that native speakers of Swésmén find
acceptablé. So if you wanted to write a grammar for such dialects, you
would have to employ additional grammatical mechanismg, merely
context free rules.

CFG recognition using append

That's the theory, but how do we work with context free gramsnan
Prolog? To make things concrete: suppose we are given axtoines
grammar. How can we write a recogniser for it? And how can wéewr
a parser for it? In this chapter we’ll look at the first questim detail.
We'll first show how (rather naive) recognisers can be wmitte Prolog,
and then show how more sophisticated recognisers can béenvnitith
the help of difference lists. This discussion will lead usdefinite clause
grammars, Prolog’s built-in grammar tool. In the followirtpapter we’ll
look at definite clause grammars in more detail, and learnofeother
things) how to use them to define parsers.

So: given a context free grammar, how do we define a recogimser
Prolog? In fact, Prolog offers a very direct answer to thiegjion: we
can simply write down Prolog clauses that correspond, in Bwionis
way, to the grammar rules. That is, we can simply turn the gmam
into Prolog.

Here’s a simple (though as we shall learn, inefficient) waydoing
this. We shall use lists to represent strings. For example, shall
use the list [a,woman,shoots,a,man] to represent the string woman
shoots a man Now, we have already said that the> symbol used
in context free grammars mearan consist gf or can be built out
of, and this idea is easily modelled using lists. For examphe, ttule
s -> np vp can be thought of as saying: a list of words is arist if
it is the result of concatenating atp list with a vp list. As we know

1“Evidence against the context-freeness of natural langllagStuart M. Shieber,
Linguistics and Philosophy8:333-343, 1985.
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how to concatenate lists in Prolog (we can uggpend/3), it should be
easy to turn these kinds of rules into Prolog. And what abbet fules
that tell us about individual words? Even easier: we can kimyew
n -> womanas saying that the lis{woman] is ann list.

If we turn these ideas into Prolog, this is what we get:

s(2):- np(X), vp(Y), append(X,Y,Z).
np(Z) :- det(X), n(Y), append(X,Y,Z).
vp(Z):- v(X), np(Y), append(X,Y,Z).
vp(2) :- v(Z).

det ([thel).
det([al).

n([woman]) .
n([man]).

v([shoots]) .

The correspondence between the CFG rules and the Prolog code
should be clear. And to use this program as a recogniser, mphsi
pose the obvious queries. For example:

?- s([a,woman,shoots,a,man]).
yes

In fact, because this is a simple declarative Prolog program can
do more than this: we can also generate all the sentencegthismar
produces. Our little grammar generates 20 sentences. Heréha first
five:

7- s(X).

X

[the,woman,shoots,the,woman] ;

X

[the,woman,shoots,the,man] ;

X = [the,woman,shoots,a,woman] ;

>
]

[the,woman,shoots,a,man] ;
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X = [the,woman,shoots]

Moreover, we're not restricted to posing questions aboutesees: we
can ask about other grammatical categories. For example:

?- np([a,woman]) .
yes

And we can generate noun phrases with the following query.
7- np(X).

Now this is rather nice. We have a simple, easy to understand
program which corresponds with our CFG in an obvious way. éduer,
if we added more rules to our CFG, it would be easy to alter the
program to cope with the new rules.

But there is a problem: the program doesn’t use the inputesest
to guide the search. Make a trace for the quer§yfa,man,shoots])
and you will see that the program chooses noun phrases ard ver
phrases and only afterwards checks whether these can beireamto
form the sentencela,man,shoots]. For example, Prolog will find that
[the,woman] iS a noun phrase anfshoots,the,woman] a verb phrase
and only then will it check whether concatenating theses lisappens
to yield [a,man,shoots], which of course it won't. So, Prolog starts
to backtrack, and the next thing it will try is whether corarating
the noun phras€the,woman] and the verb phraséshoots,the,man]
happens to yield[a,man,shoots], another non-starter. It will go on
like this until it (finally) produces the noun phrasé,man] and the
verb phrase[shoots]. The problem is that the goalsp(X) and vp(Y)
are called with uninstantiated variables as arguments.

So, how about changing the rules in such a way #giend becomes
the first goal:

s(Z):- append(X,Y,2), np(X), vp(Y).
np(Z) :- append(X,Y,Z), det(X), n(Y).
vp(2):- append(X,Y,2z), v(X), np(¥).
vp(2):- v(Z).

det ([thel).
det([al).
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n([woman]) .
n([man]).

v([shoots]).

Here we first useappend/3 to split up the input list.  This
instantiates the variables and Y, so that the other goals are all called
with instantiated arguments. However, this program isl giibt very
appealing: it usesappend/3 a lot and, even worse, it usesppend/3
with uninstantiated variables in the first two arguments. ¥dsv in the
previous chapter that this is a source of inefficiency. Andewd, the
performance of this recogniser is very bad. It is revealing ttace
through what actually happens when this program analysesntersce
such asa woman shoots a marAs you will see, relatively few of the
steps are devoted to the real task of recognising the sesgemgost are
devoted to usingappend/3 to decompose lists. This isn't much of a
problem for our little grammar, but it certainly would be ifewwere
working with a more realistic grammar capable of generatandarge
number of sentences. We need to do something about this.

CFG recognition using difference lists

A more efficient implementation can be obtained by making w$e
difference lists This is a sophisticated (and, once you've grasped it,
beautiful) Prolog technique that can be used for a varietypurdposes.
The key idea underlying difference lists is to representitffermation
about grammatical categories not as a single list, but asdifierence
between two lists. For example, instead of representinggoman shoots
a man as [a,woman,shoots,a,man] we can represent it as the pair of
lists

[a,woman,shoots,a,man] [].

Think of the first list aswhat needs to be consumédr if you prefer:
the input list), and the second list awhat we should leave behingbr:
the output lis). Viewed from this (rather procedural) perspective the
difference list

[a,woman,shoots,a,man] [].

represents the senten@ woman shoots a mamecause it says:f |
consume all the symbols on the left, and leave behind the ddgndm
the right, then | have the sentence | am interested ifhat is, the
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sentence we are interested in is the difference between dh&ems of
these two lists.

That's all we need to know about difference lists to rewritar o
recogniser. If we simply bear in mind the idea of consumingething,
and leaving something behind in mind, we obtain the follaywecogniser:

s(X,2):- np(X,Y), vp(Y,Z).
np(X,Z):- det(X,Y), n(Y,Z).
vp(X,Z2):- v(X,Y), np(Y,Z).
vp(X,2):- v(X,Z).

det ([the|W],W).
det ([alW],W).

n([woman|W],W).
n([man|W],wW).

v([shoots|W],W).

Consider these rules carefully. For example, theule says:| know
that the pair of listsX and Z represents a sentence if (1) | can consume
X and leave behind &, and the pairX and Y represents a noun phrase,
and (2) | can then go on to consumeleaving Z behindand the pair
Y Z represents a verb phraseThe np rule and the second of thep
rules work similarly.

Moreover, the same idea underlies the way this grammar banitle
words. For example

n([man|W],W).

means we are handlingpan as the difference betweefman|Ww] and W.
After all, the difference between what is consumed and wisatleft
behind is precisely the wordan.

Now, at first this code may be harder to grasp than our previous
recogniser. But note that we have gained something importave
haven't usedappend/3. In the difference list based recogniser, it simply
isn't needed, and this makes a big difference.

How do we use this recogniser? Well, here’s how to recognise
sentences:
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?- s([a,woman,shoots,a,man], []).
yes

This asks whether we can get aa by consuming the symbols
in [a,woman,shoots,a,man], leaving nothing behind. Similarly, to
generate all the sentences in the grammar, we ask

7- s(X, [D.

This asks: what values can you give ¥ such that we get am by
consuming the symbols i, leaving nothing behind?

The queries for other grammatical categories also work Hraesway.
For example, to find out ifa womanis a noun phrase we ask:

?- np([a,woman], [1).
And we generate all the noun phrases in the grammar as follows
7- np(X, [1).

You should trace what happens when this program analysestanse
such asa woman shoots a manAs you will see, it is a lot more
efficient than ourappend/3 based program. Moreover, as no use is
made ofappend/3, the trace is a lot easier to grasp. So we have taken
a big step forward.

On the other hand, it has to be admitted that the second remygn
is not as easy to understand, at least at first, and it's a paiuing to
keep track of all those difference list variables. If onlywiere possible
to have a recogniser as simple as the first and as efficienteasettond.
And in fact, it is possible: this is where DCGs come in.

2 Definite Clause Grammars

So, what are DCGs? Quite simply, a nice notation for writimgngmars
that hides the underlying difference list variables. Letwmk at three
examples.

A first example
As our first example, here’s our litle grammar written as a@C

s —=> np,vp.
np —-> det,n.

vp -—> v,np.
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vp -=> v.

det --> [the].
det --> [a].

n —--> [woman].
n --> [man].

v -=> [shoots].

The link with the original context free grammar should bengarent:
this is definitely the most user-friendly notation we haveedig/et. But
how do we use this DCG? In fact, we use it éxactlythe same way as
we used our difference list recogniser. For example, to fiot whether
a woman shoots a mais a sentence, we pose the query:

?- s([a,woman,shoots,a,man],[]).

That is, just as in the difference list recogniser, we ask thdre we
can get ans by consuming the symbols ifia,woman,shoots,a,man],
leaving nothing behind.

Similarly, to generate all the sentences in the grammar, age phe

query:
7- s(X, D).

This asks what values we can give ¥y such that we get ars by
consuming the symbols i, leaving nothing behind.

Moreover, the queries for other grammatical categories alsrk the
same way. For example, to find out # womanis a noun phrase we
pose the query:

?- np([a,woman], [1).
And we generate all the noun phrases in the grammar as follows
7- np(X, [1).

What's going on? Quite simply, this DCGs our difference list
recogniser! To put it another way, DCG notation is essdtigyntactic
sugar, user-friendly notation that lets us write grammarsai natural
way. But Prolog translates this notation into the kinds dfedénce lists
discussed before. So we have the best of both worlds: a nioplesi
notation for working with, and the efficiency of differencists.
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There is an easy way to see what Prolog translates DCG rutes in
Suppose you are working with the DCG just given (that is, sgppthat
Prolog has already consulted the rules). Then if you poseqthery:

?7- listing(s).
you will get the response
s(A,B) :-

np(A,C),
vp(C,B).

This is what Prolog has translated --> np,vp into. Note that (apart
from the choice of variables) this is exactly the differerlg rule we
used in our second recogniser.
Similarly, if you pose the query
?7- listing(ap).
you will get
np(A,B) :-

det(A,C),
n(C,B).

This is what Prolog has translateth --> det,n into. Again (apart
from the choice of variables) this is the difference listeruke used in
our second recogniser.

To get a complete listing of the translations of all the rulesnply

type
?- listing.

There is one thing you may observe. Some Prolog implementati
translate rules such as

det --> [the].
not into
det ([the|W],W).
which was the form we used in our difference list recogniser, into

det(A,B) :-
’C’> (A,the,B).

But although the notation is different, the idea is the sarfis says
you can get a listB from a list A by consuming athe. That is, once
again this is a difference list representation. Note that is an atom.
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Adding recursive rules

Our original context free grammar generated only 20 seetentlowever
it is easy to write context free grammars that generate tefinimany
sentences: simply use recursive rules. Here’'s an exammés hdd the
following rules to our little grammar:

s -> s conj s
conj —> and
conj —-> Or
conj -> but

This rule allows us to join as many sentences together as we i
using the wordsand, but, and or. So this grammar classifies sentences
such asThe woman shoots the man or the man shoots the woasan
grammatical.

Now, in principle it is easy to turn this grammar into a DCG. We
need merely add the rules

s --> s,conj,s.

conj --> [and].
conj --> [or].
conj --> [but].

But there is a problem lurking under the surface. What doesdoBr
actually do with this DCG? Let's have a look.

First, let's add the new rules at thHeeginningof the knowledge base,
before the rules --> np,vp. What happens if we then pose the query
s([a,woman,shoots], [1)? Prolog immediately goes into a loop.

Can you see why? The point is this. Prolog translates DCGs runto
ordinary Prolog rules. If we place the recursive rie--> s,conj,s
in the knowledge base before the non-recursive mile-> np,vp then
the knowledge base will contain the following two Prologesl in this
order:

s(A, B) :-
s(A, C),
conj(C, D),
s(D, B).

s(A, B) :-
np(A, C),
vp(C, B).
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Now, from a declarative perspective this is fine, but from acpdural
perspective this is fatal. When it tries to use the first ruRrplog
immediately encounters the goal(A,C), which it then tries to satisfy
using the first rule, whereupon it immediately encounterg tjoal
s(A, C), which it then tries to satisfy using the first rule, wherengb
immediately encounters the goakA, C), and so on. In short, it goes
into an infinite loop and does no useful work.

So let's add the recursive rules --> s,conj,s at the end of
the knowledge base, so that Prolog always encounters thesldten
of the non-recursive rule first. What happens now, when wee pos
the query s([a,woman,shoots], [1)? Well, now Prolog handles this
and gives an answer. But what happens when we pose the query
s ([woman,shoot], [1)? Note that this is an ungrammatical sentence
that is not accepted by our grammar. Once again, Prolog geds an
infinite loop. Since it is impossible to recognideioman,shoot] as a
sentence consisting of a noun phrase and a verb phrase,gPuiés
to analyse it with the rules --> s,conj,s, and ends up in the same
unending loop as before.

In short, we are having the same problems that we met when we
discussed recursion, and rule and goal ordering, in ChaBterin a
nutshell, s --> s,conj,s translates into a left-recursive rule, and that’s
bad news. Moreover, as we saw earlier, wan't fix such problems
simply by tinkering with the rule ordering: the way out of &uc
difficulties is to change the goal order of the recursive rete that the
recursive goal is not the first one in the body of the rule. Thgat
ideally we should rewrite the rule so that it is no longer -leftursive.

Nice idea, but unfortunately, it is not an option here. Whyt?o
Because the order of the goals determines the order of theswiar the
sentence! It makes an important difference, for exampleetihvdr our
grammar acceptshe woman shoots the man and the man shoots the
woman (s --> s,conj,s) or whether it acceptand the woman shoots
the man the man shoots the womg@n --> conj,s,s).

But there is a way out. The standard solution is to introduceew
non-terminal symbol and rewrite the DCG. We could, for exEmpise
the categorysimple_s for sentences without embedded sentences. Our
grammar would then look like this:

s —-—> simple_s.

s --> simple_s,conj,s.
simple_s --> np,vp.

np —-> det,n.

vp -—> v,np.
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vp ——> V.
det --> [the].
det --> [a].

n -—> [woman] .

n --> [man].

v --> [shoots].
conj --> [and].
conj --> [or].

conj --> [but].

As you should check, Prolog doesn’t get into infinite loopsthwthis
grammar as it did with the previous one, so from a computation
perspective the solution is satisfactory. But it leaves aifiing to be
desired from a linguistic perspective. The DCG that loopeds wat
least faithful to the linguistic intuitions about the sttue of sentences
made usingand, but, and or. The new DCG imposes an additional
layer of structure that is motivated by processing rathemttinguistic
considerations; we are no longer simply turning grammats Frolog.

The moral is: DCGs aren’t magic. They are a nice notation, ymu
can’t expect to write down an arbitrary CFG as a DCG and hawvairit
without problems. DCG rules are ordinary Prolog rules ingdise, and
this means that you must pay attention to what your Prologrpmeter
is going to do with them. And in particular, you have to keep eye
out for left-recursion.

A DCG for a simple formal language

As our last example, we shall define a DCG for the formal laggua
a™b™. What is this language? And what is a formal language anyway?

A formal language is simply a set of strings. The term “formal
language” is intended to contrast with the term “natural glsage”:
whereas natural languages are languages that human beatgallya
use, formal languages are mathematical objects that canmaientists,
logicians, and mathematicians define and study for variaupgses.

A simple example of a formal language ig'b™. The words in this
language are built up from two symbols: the symlaoland the symbol
b. In fact, the language™b™ consists of all strings made up from these
two symbols that have the following form: the string must sieh of an
unbroken block ofas of length n, followed by an unbroken block of
bs of lengthn, and nothing else. So the stringd, aablh aaabbband
aaaabbbball belong to a™b™. (Note that the empty string belongs to
a™b™ too: after all, the empty string consists of a block ax of length
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zero followed by a block obs of length zero.) On the other handba
and abba do not belong toa™b™.

Now, it is easy to write a context free grammar that gener#tes
language:

s —> €
s >1sr
1 ->a
r->b

The first rule says that as can be realised as nothing at all. The
second rule says that a;m can be made up of ah (for left) element,
followed by ans, followed by anr (for right) element. The last two
rules say thatl elements and elements can be realised as and bs
respectively. It should be clear that this grammar reallesdigenerate
all and only the elements ai”b™, including the empty string.

Moreover, it is easy to turn this grammar into DCG. We can do so
as follows:

s ——> [].
s ——> 1,s,r.
1 --> [a].
r ——> [b].

Note that the second rule is recursive (but, thankfully, left recursive).
And in fact this DCG works exactly as we would hope. For exampl
to the query

?- s([a,a,a,b,b,b], [1).
we get the answer yes, while to the query
?- s([a,a,a,b,b,b,b], []).
we get the answer no. The query
7- s(X, 1.
enumerates the strings in the language, starting fidm
3 Exercises

Exercise 7.1. Suppose we are working with the following DCG:
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s ——> foo,bar,wiggle.
foo --> [choo].

foo --> foo,foo.

bar --> mar,zar.

mar —--> me,my.

me --> [i].

my --> [am].

zar —--> blar,car.
blar --> [a].

car --> [train].
wiggle —--> [toot].
wiggle —-> wiggle,wiggle.

Write down the ordinary Prolog rules that correspond to ¢h&CG
rules. What are the first three responses that Prolog givetheoquery
s(X,[1)?

Exercise 7.2. The formal languagea"b™ — {e} consists of all the
strings in a™b™ except the empty string. Write a DCG that generates
this language.

Exercise 7.3. Let a"b?>" be the formal language which contains all
strings of the following form: an unbroken block as of length n

followed by an unbroken block obs of length 2n, and nothing else.

For example,abb, aabbbl and aaabbbbbbbelong toa™b?”, and so does

the empty string. Write a DCG that generates this language.

4 Practical Session

The purpose of this session is to help you get familiar with G3C
difference lists, and the relation between them, and to giga some
experience in writing basic DCGs. As you will learn in the lémling
chapter, there is more to DCGs than the ideas just discud$edetheless,
what you have learned so far is certainly the core, and it ipoitant
that you are comfortable with the basic ideas before moving o

First some keyboard exercises:

1. Type in or download the simpleappend/3 based recognisers
discussed in the text, and then run some traces. As you wal] se
we were not exaggerating when we said that their performasmce
poor. Even for such simple sentences Hse woman shot a man
you will see that the traces are long and difficult to follow.

2. Next, type in or download our second recogniser, the orsedan
difference lists, and run more traces. As you will see, thisr&
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dramatic gain in efficiency. Moreover, you will see that thaces
are very simple to understand, especially when compared with the
monsters produced by theppend/3 based implementations.

3. Next, type in or download the DCG discussed in the text. eTyp
listing so that you can see what Prolog translates the rules to.
How does your system translate rules of the favat --> [thel?
That is, does it translate them to rules liket ([the|X],X), or
does is make use of rules containing the’ predicate?

4. Now run some traces. Apart from variable names, the tryoes
observe here should be very similar to the traces you obderve
when running the difference list recogniser.

And now it's time to write some DCGs:

1. The formal languag&venis very simple: it consists of all strings
containing an even number @, and nothing else. Note that the
empty stringe belongs toEven Write a DCG that generateSven

2. The formal languagei™b?™c>™d™ consists of all strings of the
following form: an unbroken block oés followed by an unbroken
block of bs followed by an unbroken block aofs followed by an
unbroken block ofds, such that thea and d blocks are exactly
the same length, and the and ¢ blocks are also exactly the same
length and furthermore consist of an even numberbsfand cs
respectively. For example;, abbccd and aabbbbccecddall belong
to a"b?>mc®™md™. Write a DCG that generates this language.

3. The language that logicians call “propositional logic epvthe
propositional symbolg, g, andr” can be defined by the following
context free grammar:

prop —> p

prop —> q

prop -> r

prop —-> — prop

prop —> (prop A prop)
prop —-> (prop V prop)
prop —> (prop — prop)

Write a DCG that generates this language. Actually, because
don’t know about Prolog operators yet, you will have to make a
few rather clumsy looking compromises. For example, irsteé
getting it to recognise
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-(p — @
you will have to get it recognise things like
[not, °(’, p, implies, q, ’)’]
instead. We will learn in Chapter 9 how to deal with propasitl
logic somewhat more naturally; in the meantime, write a D®@t t

accepts a clumsy looking version of this language. WQsefor Vv,
and and for A.






Chapter 8

More Definite Clause
Grammars

4 )
This chapter has two main goals:

1. To examine two important capabilities offered
by DCG notation: extra arguments and extra
goals.

2. To discuss the status and limitations of
DCGs.

- J
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1 Extra Arguments

In the previous chapter we introduced basic DCG notationt BGGs
offer more than we've seen so far. For a start, DCGs allow usptecify
extra arguments. Extra arguments can be used for many pmspog’ll
examine three.

Context free grammars with features

As a first example, let's see how extra arguments can be useatldo
featuresto context-free grammars.
Here’s the DCG we worked with in the previous chapter:

s -=> np,Vvp.
np —-> det,n.

vp -—> v,np.
vp ——> V.

det --> [the].
det -—> [a].

n --> [woman].
n --> [man].

v -—> [shoots].

Now, suppose we wanted to deal with sentences like “She shoot
him”, and “He shoots her”. What should we do? Well, obvioushg

should add rules saying that “he”, “she”, “him”, and “her’eapronouns:

pro —-—> [hel.
pro ——> [she].
pro ——> [him].
pro —-—> [her].

Furthermore, we should add a rule saying that noun phrasaesbea
pronouns:

np --> pro.

In this new DCG any good? Well, up to a point, it works. For
example:

?- s([she,shoots,him], []).
yes
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But there’s an obvious problem. The DCG will also accept a dbt
sentences that are clearly wrong, such as “A woman shoot§ SHer
shoots a man”, and “Her shoots she”:

?7- s([a,woman,shoots,shel, []).
yes

?- s([her,shoots,a,man],[]).
yes

?- s([her,shoots,she], []1).
yes

That is, the grammar doesn’t know that “she” and “he” ambject
pronouns and cannot be used abject position; thus “A woman shoots
she” is bad because it violates this basic fact about EnglMbreover,
the grammar doesn’'t know that “her” and “him” ambject pronouns
and cannot be used isubjectposition; thus “Her shoots a man” is bad
because it violates this constraint. As for “Her shoots shkis manages
to get both matters wrong at once.

Now, it's pretty obviouswhat we have to do to put this right: we
need to extend the DCG with information about which pronogas
occur in subject position and which in object position. Theeiesting
question: how exactly are we to do this? First let's look at a naive way
of correcting this, namely adding new rules:

s —--> np_subject,vp.

np_subject --> det,n.
np_object --> det,n.
np_subject --> pro_subject.
np_object --> pro_object.

vp ——> v,np_object.
vp —-=> V.

det --> [the].
det --> [a].

n —--> [woman].
n -—> [man].

pro_subject --> [he].
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pro_subject -—> [she].
pro_object --> [him].
pro_object --> [her].

v --> [shoots].
Now this solution “works”. For example,

?- s([her,shoots,she], []).
no

But neither computer scientists nor linguists would coesidhis a
good solution. The trouble is, a small addition to the leridoas led
to quite a big change in the DCG. Let's face it: “she” and “héahd
“he” and “him”) are the same in a lot of respects. But to deathwi
the property in which they differ (namely, in which positidhey can
occur in sentences) we've had to make big changes to the gaamm
particular, we've doubled the number of noun phrase rulésvd had to
make further changes (for example, to cope with plural nohnages)
things would get even worse. What we really need is a morecateli
programming mechanism that allows us to cope with such fadtisout
being forced to add rules all the time. And here’s where théraex
arguments come into play. Look at the following grammar:

s —-—> np(subject) ,vp.

np(_) --> det,n.
np(X) --> pro(X).

vp --> v,np(object).
vp ——> V.

det --> [the].
det ——> [a].

n --> [woman] .
n —--> [man].

pro(subject) --> [he].
pro(subject) --> [shel.
pro(object) --> [him].
pro(object) --> [her].

v -=> [shoots].
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The key thing to note is that this new grammar contains onlg on
new noun phrase rule. In fact, it is very similar to the firsargmar
that we wrote, except that now the symhgd is associated with a new
argument, eithersubject, object, _ or X. A linguist would say that
we've added features to distinguish various kinds of noumagh In
particular, note the four rules for the pronouns. Here weised the
extra argument to state which pronouns can occur in subjesttign,
and which can occur in object position. Thus these rules hee nost
fundamental, for they give us the basic facts about how th@saouns
can be used.

So what do the other rules do? Well, intuitively, the rule

np(X) --> pro(X).

uses the extra argument (the varialilp to pass these basic facts about
pronouns up to noun phrases built out of them: because thablarx

is used as the extra argument for both the np and the pronawhgP
unification will guarantee that they will be given the samduga In
particular, if the pronoun we use is “she” (in which cakesubject),
then the np will (through its extra argumek&subject) be marked as
a subject np. On the other hand, if the pronoun we use is “her” (
which caseX=object), then the extra argument for np will be marked
X=object too. And this, of course, is exactly the behaviour we want.

On the other hand, although noun phrases built using the rule

np(_) --> det,n.

also have an extra argument, we've used the anonymous largb
its value. Essentially this meansan be either which is correct, for
expressions built using this rule (such as “the man” and “anex”) can
be used in both subject and object position.

Now consider the rule

vp --> v,np(object).

This says that to apply this rule we need to use a noun phrasesenh
extra argument unifies witlobject. This can beeither noun phrases
built from object pronounsor noun phrases such as “the man” and
“a woman” which have the anonymous variable as the value ef th
extra argument. Crucially, pronouns marked has hawngject as the
value of the extra argumerdan't be used here: the atomsbject and
subject don’t unify. Note that the rule

s —-—> np(subject),vp.
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works in an analogous fashion to prevent noun phrases madwjett
pronouns from ending up in subject position.
This works. You can check it out by posing the query:

7- s(X,[D).

As you step through the responses, you'll see that only aabbp
English is generated.

But while the intuitive explanation just given is correcthat’s really
going on? The key thing to remember is that DCG rules are just a
convenient abbreviation. For example, the rule

s -—> np,vp.
is really syntactic sugar for

s(A,B) :-
np(A,C),
vp(C,B).

That is, as we learned in the previous chapter, the DCG wootais
a way of hiding the two arguments responsible for the difieee list
representation, so that we don’t have to think about them.wlek with
the nice user-friendly notation, and Prolog translatesnib ithe clauses
just given.

Ok, so we obviously need to ask what

s -—> np(subject),vp.
translates into. Here's the answer:

s(A,B) :-
np(subject,A,C),
vp(C,B).

As should now be clear, the name “extra argument” is a good one
as this translation makes clear, tl@bject symbol reallyis just one
more argument in an ordinary Prolog rule. Similarly, our mophrase
DCG rules translate into

np(A,B,C) :-
det (B,D),
n(D,C).

np(A,B,C) :-
pro(A,B,C).
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Note that both rules havéhree arguments. The firstA, is the extra
argument, and the last two are the ordinary, hidden DCG aegtsn(the
two hidden arguments are always the last two arguments).

Incidentally, how do you think we would use the grammar ta tise
grammatical noun phrases? Well, if we had been working with DCG
rule np --> det,n (that is, a rule with no extra arguments) we would
have made the query

7- np(NP, [1).

So, in view of what we have just learned about extra argumeitits
not too surprising that we need to pose the query

7- np(X,NP, [1).

when working with our new DCG. And here’s what the responseild/o
be:

X = _2625
NP = [the,woman] ;

X = _2625
NP = [the,man] ;

X = _2625
NP = [a,woman] ;

X = _2625
NP = [a,man] ;

X = subject
NP = [he] ;

X = subject
NP = [she] ;

X = object
NP = [him] ;

X = object
NP = [her] ;

no
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One final remark: don’'t be misled by this simplicity of our exale
grammar. Extra arguments can be used to cope with some comple
syntactic problems. DCGs are no longer the state-of-thegeammar
development tools they once were, but they’re not toys eitmce you
know about writing DCGs with extra arguments, you can writane
fairly sophisticated grammars.

Building parse trees

So far, the programs we have discussed have been ablectygnise
grammatical structure (that is, they could correctly anmswes or no
when asked whether the input was a sentence, a noun phradesoan
on) and togenerategrammatical output. This is pleasant, but we would
also like to be able tgarse That is, we would like our programs not
only to tell uswhich sentences are grammatical, but also to give us an
analysis of their structure. In particular, we would like $ee the trees
the grammar assigns to sentences.

Well, using only standard Prolog tools we can’t actually vdraice
pictures of trees, but wean build data structures which describe trees
in a clear way. For example, corresponding to the tree

SN
np vp
/N

|
det n v
|

a woman shoots

we could have the following term:
s(np(det(a) ,n(woman) ) ,vp(v(shoots))).

Sure: it doesn'tlook as nice, but all the information in the picture is
there. And, with the aid of a decent graphics package, it did easy
to turn this term into a picture.

But how do we get DCGs to build such terms? Actually, it's et
easy. After all, in effect a DCG has to work out what the tremicttire
is when recognising a sentence. So we just need to find a way of
keeping track of the structure that the DCG finds. We do thisabigling
extra arguments. Here's how:

s(s(NP,VP)) --> np(NP),vp(VP).
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np (np(DET,N)) --> det(DET) ,n(N).

vp(vp(V,NP)) --> v (V) ,np(NP).
vp(vp(N)) -=> v(V).

det (det(the)) —--> [the].
det(det(a)) --> [a].

n(n(woman)) --> [woman].
n(n(man)) --> [man].

v(v(shoots)) --> [shoots].

What's going on here? Essentially we are building the parsestfor
the syntactic categories on the left hand side of the rules afuthe
parse trees for the syntactic categories on the right hadd sf the
rules. Consider the rulerp(vp(V,NP)) --> v(V),np(NP). When we
make a query using this DCG, thein v(V) and theNP in np(NP) will
be instantiated to terms representing parse trees. For@eamperhapsy
will be instantiated to

v(shoots)
and NP will be instantiated to
np(det(a) ,n(woman)) .

What is the term corresponding to a vp made out of these twtsires?
Obviously it should be this:

vp (v(shoots) ,np(det(a),n(woman))).

And this is precisely what the extra argument(V,NP) given in the
rule vp(vp(V,NP)) --> v(V),np(NP) returns to us: a term whose
functor is vp, and whose first and second arguments are the values of
vV and NP respectively. To put it informally: it plugs th& and theNP
terms together under ap functor.

To parse the sentence “A woman shoots” we pose the query:

?- s(T, [a,woman, shoots], []) .

That is, we ask for the extra argumentto be instantiated to a parse
tree for the sentence. And we get:

T = s(ap(det(a),n(woman)) ,vp(v(shoots)))
yes
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Furthermore, we can generate all parse trees by making ffeviiog
query:

7- s(T,S,[1).

The first three responses are:

T = s(np(det(the) ,n(woman)),
vp(v(shoots) ,np(det(the) ,n(woman))))
S = [the,woman,shoots,the,woman] ;
T = s(np(det(the) ,n(woman)),
vp(v(shoots) ,np(det(the) ,n(man))))
S = [the,woman,shoots,the,man] ;
T = s(np(det(the) ,n(woman)),
vp (v(shoots) ,np(det(a) ,n(woman))))
S = [the,woman,shoots,a,woman]

In short, we have just seen an elegant (and useful) exampleowf to
build structure using unification.

Extra arguments can also be used to build semantic repatiers
Now, we did not say anything about what the words in our little
DCG mean. In fact, nowadays a lot is known about the semantics
of natural languages, and it is surprisingly easy to buildnaetic
representations which partially capture the meaning otesmes or even
entire discourses. Such representations are usually ssipns of some
formal language (for example first-order logic, discourspresentation
structures, or a database query language) and they arelyuwdlt up
compositionally. That is, the meaning of each word is exg@dsin
the formal language; this meaning is given as an extra argunre
the DCG entries for the individual words. Then, for each rirethe
grammar, an extra argument shows how to combine the mearirbeo
two subcomponents. For example, to the rdle--> np, vp we would
add an extra argument stating how to combine fipemeaning and the
vp meaning to form thes meaning. Although somewhat more complex,
the semantic construction process is quite like the way wid bp the
parse tree for the sentence from the parse tree of its swpart

1For a detailed account of how to do this, s&epresentation and Inference for
Natural Language: A First Course in Computational SemantiPatrick Blackburn and
Johan Bos, CSLI Publications, 2005
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Beyond context free languages

In the previous chapter we introduced DCGs as a useful Prodad
for representing and working with context free grammars.wNthis is
certainly a good way of thinking about DCGs, but it's not thdéaole
story. For the fact of the matter is: DCGs can deal with a lotreno
than just context free languages. The extra arguments we haen
discussing (and indeed, the extra goals we shall introdcetlg) give
us the tools for coping with any computable language whatoeWe
shall illustrate this by presenting a simple DCG for the fafnanguage
a”b"c”\{e}.

The formal language™b™c™\{e} consists of all non-null strings made
up of as, bs, andcs which consist of an unbroken block a§, followed
by an unbroken block obs, followed by an unbroken block ofs, all
three blocks having the same length. For exampte;, and aabbcc and
aaabbbccc all belong toa™b™c™\{e}.

The interesting thing about this language is that in& context free.
Try whatever you like, you will not succeed in writing a caoxitdree
grammar that generates precisely these strings. Proviisgwbuld take
us too far afield, but the proof is not particularly difficuind you can
find it in many books on formal language theory.

On the other hand, as we shall now see, it is very easy to write
a DCG that generates this language. Just as we did in theopeevi
chapter, we shall represent strings as lists; for example, string abc
will be represented using the ligta,b,c]. Given this convention, here’s
the DCG we need:

s(Count) --> ablock(Count) ,bblock(Count),cblock(Count).

ablock(0) --> [].
ablock(succ(Count)) --> [a],ablock(Count).

bblock(0) --> [].
bblock(succ(Count)) --> [b],bblock(Count).

cblock(0) ——> [].
cblock(succ(Count)) --> [c],cblock(Count).

The idea underlying this DCG is fairly simple: we use an extra
argument to keep track of the length of the blocks. Theule simply
says that we want a block aofs followed by a block ofbs followed by
block of cs, and all three blocks are to have the same length, namely
Count.
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What should the values ofount be? The obvious answer ist, 2,
3, 4, and so on. But as yet we don't know how to mix DCGs and
arithmetic, so this isn’t very helpful. Fortunately, assthDCG shows,
there’s an easier (and more elegant) way. Represent the eruthtby
0, the number 1 bysucc(0), the number 2 bysucc(succ(0)), the
number 3 bysucc(succ(succ(0))), and so on, just as we did it in
Chapter 3 (as we said in Chapter 3, you can readc as “successor
of”). This choice of notation enables us to count using uatfan.

And this is precisely what our new DCG does. For example, ss@p
we pose the following query:

?- s(Count,L,[]).

which asks Prolog to generate the listsof symbols that belong to this
language, and to give the value 0bunt needed to produce each item.
Then the first four responses are:

Count = 0
L=1[];

Count = succ(0)
L=1[a, b, c] ;

Count = succ(succ(0))
L=1[a, a, b, b, c, c] ;

Count = succ(succ(succ(0)))
L=1[a, a, a, b, b, b, ¢, ¢, c]

The value ofCount clearly corresponds to the length of the blocks.

So: DCGs are not just a tool for working with context free gnaams.
They are strictly more powerful than that, and (as we've jesgn) part
of the extra power comes from the use of extra arguments.

2 Extra Goals

Any DCG rule is really syntactic sugar for an ordinary Prolage. So
it's not really too surprising that we're allowed to make usk extra
arguments. Similarly, it shouldn’'t come as too much of a gsepthat
we can call any Prolog predicate whatsoever from the rightdhaide
of a DCG rule.
The DCG of the previous section can, for example, be adapted t

work with Prolog numbers (instead of the successor reptaten of
numbers) by using calls to Prolog’s built-in arithmetic ¢tionality. We



Chapter 8. More Definite Clause Grammars 151

simply count how manyas, bs, andcs have been generated. Here's the
code:

s -—> ablock(Count) ,bblock(Count),cblock(Count) .

ablock(0) --> [].
ablock (NewCount) -—> [a],ablock(Count),
{NewCount is Count + 1}.

bblock(0) --> [].
bblock (NewCount) --> [b],bblock(Count),
{NewCount is Count + 1}.

cblock(0) ——> [].
cblock(NewCount) --> [c],cblock(Count),
{NewCount is Count + 1}.

As this example suggests, extra goals can be written (amgyhean
the right side of a DCG rule, but must be placed between curdkets.
When Prolog encounters such curly brackets while tramglag DCG
into its internal representation, it just takes the extraalgospecified
between the curly brackets over into the translation. Se, gacond rule
for the non-terminalablock above would be translated as follows:

ablock (NewCount,A,B) : -
’C’ (A, a, C),
ablock(Count, C, B),
NewCount is Count + 1.

Incidentally, if you play around with this DCG, you will findhat
there are actually some problems with it. In contrast to the that we
saw in the last section, this new version only works coryeathen used
in the recognition mode. If you try to generate with it, it wdt some
point enter an infinite loop. We won’t bother to fix this proflehere
(apart from anything else, we find the earli®icc based approach more
elegant).

The possibility of adding arbitrary Prolog goals to the tigtand side
of DCG rules, makes DCGs very powerful (it means that we can do
anything that we can do in plain Prolog). In general, howewubis
capability is not used much, which tends to suggest that #ecbDCG
notation is well designed. There is, however, one classiegiion for
extra goals in computational linguistics: with the help otra goals, we
can neatly separate grammar rules and lexical informati@t's see how.
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Separating rules and lexicon

We are going to separate rules and lexicon. That is, we ar@ggoi
to eliminate all mention of individual words in our DCGs andstead
record all the information about individual words sepdsaia a lexicon.
To see what is meant by this, let's return to our basic grammar

np —-> det,n.

vp -—> v,np.
vp ——> V.

det --> [the].
det -—> [a].

n --> [woman] .
n --> [man].

v -=> [shoots].

We are now going to write a DCG that generates exactly the same
language, but in which no rule mentions any individual worll the
information about individual words will be recorded sepala

Here is an example of a (very simple) lexicon. Lexical estrare
encoded by using a predicateex/2 whose first argument is a word,
and whose second argument is a syntactic category.

lex(the,det).
lex(a,det).
lex(woman,n) .
lex(man,n) .
lex(shoots,v).

And here is a simple grammar that could go with this lexicom. |
essence it's the same as the previous one. In fact, the omdg that
have changed are those that mentioned specific words, thahdsiet,
n, and v rules.

np —-> det,n.

vp ——> v,np.
vp ——> V.

det --> [Word],{lex(Word,det)}.
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n --> [Word],{lex(Word,n)?}.
v -=> [Word],{lex(Word,v)}.

Consider the newdet rule. This rule part says “@det can consist of
a list containing a single elemenmtord” (note thatWord is a variable).
Then the extra goal adds the crucial stipulation: “so longiésd unifies
with something that is listed in the lexicon as a determinéfith our
present lexicon, this means thd@brd must be matched either with the
word “a” or “the”. So this single rule replaces the two prawsoDCG
rules for det.

This explains the “how” of separating rules from lexicon,t bit
doesn't explain the “why”. Is it really so important? Is thiew way of
writing DCGs really that much better?

The answer is an unequivocal yes! Itauch better, and for at least
two reasons.

The first reason is theoretical. Arguably rules should notntioe
specific lexical items. The purpose of rules is to lggneral syntactic
facts, such as the fact that sentence can be made up of a naaseph
followed by a verb phrase. The rules fer np, and vp describe such
general syntactic facts, but the old rules fwt, n, andv don’t. Instead,
the old rules simply list particular facts: that “a” is a deténer, that
“the” is a determiner, and so on. From theoretical perspedti is much
neater to have a single rule that says “anything is a detemmfor a
noun, or a verb, or any other grammatical category) if it istell as
such in the lexicon”. And this, of course, is precisely whatr cew
DCG rules say.

The second reason is more practical. One of the key lessons
computational linguists have learnt over the last twentysor years is
that the lexicon is by far the most interesting, importanid(@xpensive!)
repository of linguistic knowledge. Bluntly, if you want tget to grips
with natural language from a computational perspectivey yeed to
know a lot of words, and you need to know a lot about them.

Now, our little lexicon, with its simple two-placdex entries, is a
toy. But a real lexicon is (most emphatically!) not. A reakion is
likely to be very large (it may contain hundreds of thousaonfisvords)
and moreover, the information associated with each wordkelyl to be
very rich. Our lex entries give only the syntactical category of each
word, but a real lexicon will give much more, such as inforio@atabout
its phonological, morphological, semantic, and pragmatiaperties.

Because real lexicons are big and complex, from a softwageearing
perspective it is best to write simple grammars that have rapls
well-defined way, of pulling out the information they needrr vast
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lexicons. That is, grammars should be thought of as sepawatities
which can access the information contained in lexicons. Ak then use
specialised mechanisms for efficiently storing the lexiamd retrieving
data from it.

Our new DCG rules, though simple, illustrate the basic idéhe
new rules really do just list general syntactic facts, ane #xtra goals
act as an interface to our lexicon that lets the rules find tbxabe
information they need. Furthermore, we now take advantdgBrolog’'s
first argument indexing which makes looking up a word in theicen
more efficient. First argument indexing is a technique for kimg
Prolog’s knowledge base access more efficient. If in the yqulee first
argument is instantiated it allows Prolog to ignore all skal where the
first argument’s functor and arity is different. This meaf, example,
that we can get all the possible categoriesmahh immediately without
having to even look at the lexicon entries for all the othendreds or
thousands of words that we might have in our lexicon.

3 Concluding Remarks

We now have a fairly useful picture of what DCGs are and whaty th
can do for us. To conclude, let's think about them from a sohaw
higher level, from both a formal and a linguistic perspestiv

First the formal remarks. For the most part, we have predente
DCGs as a simple tool for encoding context free grammars ¢ortext
free grammars enriched with features such sadject and objec). But
DCGs go beyond this. We saw that it was possible to write a DCG
that generated a language that was not context free. In fay,
program whatsoevercan be written in DCG notation. That is, DCGs
are a full-fledged programming language in their own righieyt are
Turing-complete, to use the proper terminology). And aligfo DCGs
are usually associated with linguistic applications, tlveyy be useful for
other purposes.

How good are DCGs from a linguistic perspective? Well, mixed
At one stage (in the early 1980s) they were pretty much stét¢he
art. They made it possible to code complex grammars in a chesy,
and to explore the interplay of syntactic and semantic ide@srtainly
any history of parsing in computational linguistics woultveg DCGs an
honourable mention.

Nonetheless, DCGs have drawbacks. For a start, their tepdem
loop when the goal ordering is wrong (we saw an example in the
previous chapter when we added a left-recursive rule forjucmtions)
is annoying; wedon't want to think about such issues when writing
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serious grammars. Furthermore, while the ability to addeaegrguments
is useful, if we need to use lots of them (and for big grammaes w
will) it is a rather clumsy mechanism.

It is important to notice, however, that these problems coupe
because of the way Prolog interprets DCG rules. They are mugrént
to the DCG notation. Any of you who have studied parsing atgors
probably know that all top-down parsers loop on left-remgrggrammars.
So, it is not surprising that Prolog, which interprets DC@sai top-down
fashion, loops on the left-recursive grammar ride--> s conj s. If
we used a different strategy to interpret DCGs, for exampleodom-up
strategy, we would not run into the same problem. Similaify,we
didn’'t use Prolog’s built-in interpretation of DCGs, we tduuse the
extra arguments for a more sophisticated specification afufes, one
that would facilitate the use of large feature structures.

Summing up, nowadays DCGs are probably best viewed as a nice
notation for defining context free grammars enhanced withesdeatures,
a notation that (ignoring left-recursion) doubles as a gdmscogniser.
That is, they are best viewed as a convenient tool for testieg
grammatical ideas, or for implementing reasonably complgammars
for particular applications. DCGs are no longer state of #rg but
they are useful. Even if you have never programmed beforaplgi by
using what you have learned so far you are ready to start imesting
with reasonably sophisticated grammar writing. With a artional
programming language (such as C++ or Java) it simply woutld@
possible to reach this stage so soon. Things would be easifemctional
languages (such as Lisp, Caml, or Haskell), but even so, woigbtful
whether beginners could do so much so early.

4 Exercises
Exercise 8.1. Here’s our basic DCG:

s —=> np,vp.
np ——> det,n.

vp -—> v,np.
vp ——> V.

det --> [the].
det --> [a].
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--> [woman] .
--> [man] .

--> [applel.
--> [pear].

B B BB

v ——> [eats].

Suppose we add the noun “men” (which is plural) and the verb
“know”. Then we would want a DCG which says that “The men eat” i
ok, “The man eats” is ok, “The men eats” is not ok, and “The mati e
is not ok. Change the DCG so that it correctly handles thes¢éesees.
Use an extra argument to cope with the singular/plural regitn.

Exercise 8.2. In the text, we only gave examples of DCG rules with
one extra argument, but in fact you can add as many extra angism
as you like. Here's a DCG rule with three extra arguments:

kanga(V,R,Q) -—> roo(V,R),jumps(Q,Q),{marsupial (V,R,Q)}.

Translate it into the form Prolog uses.

5 Practical Session

The purpose of Practical Session 8 is to help you get famihidgth
DCGs that make use of additional arguments and goals.
First some keyboard exercises:

1. Trace some examples using the DCG which uses extra argsimen
to handle the subject/object distinction, the DCG which domes
parses, and the DCG which uses extra goals to separate Hexico
and rules. Make sure you fully understand the way all threeGBC
work.

2. Carry out traces on the DCG fou™b"c™ given in the text
(the one that gave th&ount variable the valueso, succ(0),
succ(succ(0)), and so on). Try cases where the three blocks of
as, bs, andcs are indeed of the same length as well as queries
where this is not the case.

Now for some programming. We suggest the following miniject,
which draws on all you have learned so far. Incidentally, e Practical
Session at the end of Chapter 12 we will be asking to extersl whirk
even further, so do take this project seriously.
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1. First, bring together all the things we have learned aklDQGs
for English into one DCG. In particular, in the text we saw how
to use extra arguments to deal with the subject/object ndisbin,
and in the exercises you were asked to use additional argamen
to deal with the singular/plural distinction. Write a DCG iain
handles both. Moreover, write the DCG in such a way that if wil
produce parse trees, and makes use of a separate lexicon.

2. Once you have done this, extend the DCG so that noun phrases
can be modified by adjectives and simple prepositional gsrdthat
is, it should be able to handle noun phrases such as “the small
frightened woman on the table” or “the big fat cow under the
shower”). Then, further extend it so that the distinctiontwe=n
first, second, and third person pronouns is correctly hahdbeth
in subject and object form).






Chapter 9

A Closer Look at Terms

4 N

This chapter has three main goals:

1. To introduce the == predicate.
2. To take a closer look at term structure.

3. To introduce operators.

. J
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1 Comparing Terms

Prolog contains an important predicate for comparing ternanely the
identity predicate==/2. As its name suggests, this tests whether two
terms are identical. Howevef=/2 doesnot instantiate variables, thus it
is not the same as the unification predicaté2. Let's look at some
examples.

7- a == a.

7- a == ’a’.

yes

The reason Prolog gives these answers should be clear, thpayg
attention to the last one. It tells us that, as far as Prologoiscerned,
a and ’a’ are the same obiject.

Now let's look at examples involving variables, and expljcicompare
== with the unification predicate-.

7- X==Y.
no

7- X=Y.

X = _2808
Y = _2808
yes

In these queriesX and Y are uninstantiatedvariables; we haven't given
them any value. Thus the first answer is corredt: and Y are not
identical objects, so the= test fails. On the other hand, the use of
succeeds, foX and Y can be unified.

Let's now look at queries involvingnstantiated variables:

7- a=X, a==X.
X=a
yes

The first conjunct,a=X, bindsX to a. Thus whena==X is evaluated, the
left hand side and right hand sides are exactly the same ¢Pribject,
and a==X succeeds.
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A similar thing happens in the following query:

7- X=Y, X==Y.

X = _4500
Y = _4500
yes

The conjunctX=Y first unifies the variablex and Y. Thus when the
second conjunctX==Y is evaluated, the two variables are exactly the
same Prolog object, and the second conjunct succeeds as well

It should now be clear that and == are different, nonetheless there
is an important relation between them= can be viewed as a stronger
test for equality between terms than That is, if term1 and term are
Prolog terms, and the queryermi == term2 succeeds, then the query
terml = term2 will succeed too.

Another predicate worth knowing about is==. This predicate is
defined so that it succeeds in precisely those cases wiheffails. That
is, it succeeds whenever two terms aret identical, and fails otherwise.
For example:

yes

?7- a \== ’a’.
no

These answers should be understandable: they are simplypghesite
of the answers we got above when we used Now consider:

?7- X \== a.
X = _3719
yes

Why this response? Well, we know from above that the quesya
fails (recall the way== treats uninstantiated variables). Thus the query
X\==a should succeed and it does.

Similarly:



162 Learn Prolog Now!

7- X \==
X = _798
Y = _799
yes

Again, we know from above that the quede=Y fails, thus the query
X\==Y succeeds.

2 Terms with a Special Notation

Sometimes terms look different to us, but Prolog regardsmthas
identical. For example, when we compaee and ’a’, we see two
distinct strings of symbols, but Prolog treats them as theesa And

in fact there are many other cases where Prolog regards tigstas
being exactly the same term. Why? Because it makes progmagnmi
more pleasant. Sometimes the notation Prolog likes isn'tiser-friendly
as the notation we would choose. So it is nice to be able toewrit
programs in the notation we find natural, and to let Prolog tlwem in
the notation it prefers.

Arithmetic terms

The arithmetic predicates introduced earlier are a goodngla of this.
As was mentioned in Chapter 5, -, *, and / are functors and
arithmetic expressions such a+3 are terms And this is not an
analogy. Apart from the fact that it can evaluate them witle thelp
of the is/2 predicate, Prolog views strings of symbols such B3
as being identical with ordinary complex terms. The followiqueries
make this clear:

?7- 2+3 == +(2,3).

yes

?7- +(2,3) == 2+3.
yes

?7- 2-3 == -(2,3).
yes

?7- %(2,3) == 2%3.
yes

?7- 2% (7+2) == *(2,+(7,2)).
yes
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In short, the familiar arithmetic notation is there fowur convenience.
Prolog doesn't regard it as different from the usual termation.

Similar remarks to the arithmetic comparison predicates=<, =:=,
=\=, > and >=:

7- (2 < 3) == <(2,3).
yes

7- (2 =< 3) == =<(2,3).
yes

7- (2
yes

1= 3) == =:=(2,3).

7= (2 =\= 3)
yes

=\=(2,3).

7- (2> 3) == >(2,3).
yes

?7- (2 >= 3) == >=(2,3).
yes

These example show why it's nice to have the user-friendliatimn
(would you want to have to work with expressions like=(2,3)?).
Note, by the way, that we enclosed the left hand argumentsrackbts.
For example, we didn’'t ask

7- 2 =:= 3 == =:=(2,3).
we asked
7- (2 =:= 3) == =:=(2,3).

Why? Well, Prolog finds the querg =:= 3 == =:=(2,3) confusing,
and let's face it, can you blame it? It's not sure whether tacket this
expression ag(2 =:= 3) == =:=(2,3) (which is what we want), or as
2 =:= (3 == =:=(2,3)). So we need to state the grouping explicitly.

One final remark. We have now introduced three rather sinhilaking
symbols, namely=, ==, and =:= (and indeed, there are als¢=, \==,
and =\=). Here’s a summary:
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= The unification predicate.

Succeeds if it can unify its arguments, fails otherwise.
\=  The negation of the unification predicate.

Succeeds if= fails, and vice-versa.
== The identity predicate.

Succeeds if its arguments are identical, fails otherwise.
== The negation of the identity predicate.

Succeeds if== fails, and vice-versa.
=:= The arithmetic equality predicate.

Succeeds if its arguments evaluate to the same integer.
=\= The arithmetic inequality predicate.

Succeeds if its arguments evaluate to different integers.

Lists as terms

Lists are another good example of Prolog working with oneerimél
representation, while giving us another, more user-flgndotation to
work with. Let's start with a quick look at the user-friendligt notation

it provides (that is, the square brackdtsand ]). In fact, because Prolog
also offers the| constructor, there are many ways of writing the same
list, even at the user-friendly level:

(e [a,b,c,d] == [al[b,C,d]].
yes

?- [a,b,c,d] == [a,bl|[c,d]].
yes

(e [a,b,C,d] == [a,b,cl[d]].
yes

(e [a,b,C,d] == [a,b,C,dl[]].
yes

But how does Prolog view lists internally? In fact, it seestdi
as terms which are built out of two special terms, namély which
represents the empty list, and™ (the full-stop), a functor of arity 2
which is used to build non-empty lists. The termd$ and . are called
list constructors.

This is how these constructors are used to build lists. Nessdito
say, the definition is recursive:

e The empty list is the ternj |. It has length 0.
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e A non-empty list is any term of the form(term list), whereterm
is any Prolog term, andist is any list. If list has lengthn, then
.(term list) has lengthn + 1.

Let's make sure we fully understand this definition by wogkiour
way through a few examples.

7- .(a,[1) == [a].

yes

7- . (f(d,e), [1) == [£(d,e)].

7- -(a,'(b,[])) == [a:b]-

?7- .(a,.(b,.(f(d,e),[1))) == [a,b,f(d,e)].

7= . (.(a,[1),[]) == [[a]].

7- .G, D, D, == [[[a]1].

7- .(.(a,.(b,[1)),[1) == [[a,b]].

?7- . (.(a,.(b,[1)),.(c,[1)) == [[a,b],c].

7= . (.(a,[1),.(b,.(c,[1))) == [[a],b,c].

yes

7= .G (G, [D,.(.(,.(c,[1)),[1)) == [[al, [b,c]].

yes

Prolog’s internal notation for lists is not as user-frigndls the use
of the square bracket notation. But it's not as bad as it seamfrst
sight. In fact, it works similarly to the| notation. It represents a
list in two parts: its first element (the head), and a list espnting
the rest of the list (the tail). The trick is to read these terms
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trees The internal nodes of this tree are labeled withand all have
two daughter nodes. The subtree under the left daughteresepts
the first element of the list and the subtree under the righigkter
represents the rest of the list. For example, the tree reptaon of
.(a,. (. (b,.(c,[1)),.(d,[1))), that is, [a, [b,c], d], looks like
this:

RN C A IS CIE))

aA/<‘-(-(b. L), )
NCINCYS) R ST D)
/\
b - d ]

NN 1) PN

c [

One final remark. Prolog is very polite. Not only are you free t
talk to it in the user-friendly notation, it will reply in theame way:

?7- .(f(d,e),[1) =Y.

Y = [f(d,e)]
yes

?7- .(a,. (b, 1)) =X, 2= .(.(c, 1), [1), W= [1,2,X].

X = [a,b]

Z = [[c]1]

W= 1[1,2,[a,b]l]
yes

3 Examining Terms

In this section, we will learn about some built-in predicatthat let
us examine terms more closely. First, we will look at prettisathat
test whether their arguments are terms of a certain type €i@mple,
whether they are atoms or numbers). Then we will introducedipates
that tell us something about the internal structure of cempgkerms.

Types of Terms

Remember what we said about Prolog terms in Chapter 1: threrdoar
different kinds, namely variables, atoms, numbers and d¢exnperms.
Furthermore, atoms and numbers are grouped together uhdename
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constants, and constants and variables constitute thelesitepms. The
following tree diagram summarises this:

terms
RN
simple terms  complex terms
RN
variables  constants
/7 N\

atoms numbers

Sometimes it is useful to be able to determine what type angteem
is. You might, for example, want to write a predicate that hasdeal
with different kinds of terms, but has to treat them in diffler ways.
Prolog provides several built-in predicates that test \wbiela given term
is of a certain type:

atom/1 Is the argument an atom?
integer/1 Is the argument an integer?
float/1 Is the argument a floating point number?

number/1 IS the argument an integer or a floating point number?

atomic/1 Is the argument a constant?

var/1 Is the argument an uninstantiated variable?

nonvar/1 Is the argument an instantiated variable or another term
that is not anuninstantiated variable?

Let's see how they behave.

?- atom(a).
yes

?- atom(7).
no

?- atom(loves(vincent,mia)).
no

These three examples behave exactly as we would expect. Bat w
happens, when we calitom/1 with a variable as argument?

?7- atom(X).
no
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This makes sense, since an uninstantiated variable is notatam.
However if we instantiateX with an atom first and then asktom(X),
Prolog answers yes.

?- X = a, atom(X).
X =a
yes

But it is important that the instantiation is dormefore the test:

7- atom(X), X = a.
no

The predicatesinteger/1 and float/1 behave analogously. Try some
examples.

The predicatesnumber/1 and atomic/1 behave disjunctively. First,
number/1 tests whether a given term is either an integer or a float:
that is, it will evaluate to true whenever eithénteger/1 or float/1
evaluate to true and it fails when both of them fail. As fetomic/1,
this tests whether a given term is a constant, that is, whethis either
an atom or a number. Satomic/1 will evaluate to true whenever
either atom/1 or number/1 evaluate to true and it fails when both fail.

?- atomic(mia).
yes

?7- atomic(8).
yes

?7- atomic(3.25).
yes

?7- atomic(loves(vincent,mia)).
no

?7- atomic(X)
no

What about variables? First there is thar/1 predicate. This tests
whether the argument is amninstantiatedvariable:

7- var(X)
yes
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?- var(mia).

?- var(8).

?- var(3.25).

?- var (loves(vincent,mia)).
no

Then there is thenonvar/1 predicate. This succeeds precisely when
var/1 fails; that is, it tests whether its argumentrist an uninstantiated
variable:

?- nonvar (X)
no

?- nonvar (mia) .
yes

?- nonvar(8).
yes

?- nonvar (3.25).
yes

?- nonvar (loves(vincent,mia)).
yes

Note that a complex term which contains uninstantiated abées is
not itself an uninstantiated variable (it is a complex termherefore we
have:

?- var(loves(_,mia)).
no

?- nonvar (loves(_,mia)).
yes

And when the variablex gets instantiatedvar (X) and nonvar (X)
behave differently depending on whether they are calledrbebr after
the instantiation:



170 Learn Prolog Now!

7- X = a, var(X).

no

?7- X = a, nonvar(X).
X=a

yes

7- var(X), X = a.
X=a
yes

?- nonvar(X), X = a.
no

The Structure of Terms
Given a complex term of unknown structure (perhaps a compdem

returned as the output of some predicate), what kind of mé&iion

might we want to extract from it? The obvious response is:futsctor,
its arity, and what its arguments look like. Prolog providesilt-in

predicates that provide this information. Information abdhe functor
and arity is supplied by the predicattunctor/3. Given a complex

term, functor/3 will tell us what its functor and arity are:

?- functor(f(a,b),F,A).

A=2
F=f
yes

- functor([a,b,C],X,Y)—
X =2

Y =2

yes

Note that when asked about a list, Prolog returns the fungtevhich is

the functor it uses in its internal representation of lists.
What happens when we uganctor/3 with constants? Let's try:

?- functor(mia,F,A).
A=0

F = mia

yes
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?7- functor(8,F,A).

A=0
F=28
yes

?7- functor(3.25,F,A).

A=0
F=23.25
yes

So we can use the predicafainctor/3 to find out the functor and
the arity of a term, and this usage also works for the spe@sak cof 0
arity terms (constants).

We can also usé€unctor/3 to constructterms. How? By specifying
the second and third argument and leaving the first undetexni The

query
?7- functor(T,f,7).
for example, returns the following answer:

T = £(_G286, _G287, _G288, _G289, _G290, _G291, _G292)
yes

Note that either the first argument or the second and thirdiraemt
have to be instantiated. For example, Prolog would answér am error
message to the querfunctor(T,f,N). And if you think about what
the query means, Prolog is reacting in a sensible way. Theyqise
asking Prolog to construct a complex term without tellinghtw many
arguments to provide, which is not a very sensible request.

Now that we know aboutfunctor/3, let's put it to work. In the
previous section, we discussed the built-in predicates timsted whether
their argument was an atom, a number, a constant, or a varigilt
there was no predicate that tested whether its argument weanmglex
term. To make the list complete, let's define such a prediclités easy
to do so usingfunctor/3. All we have to do is to check that there
is a suitable functor, and that the input has arguments (hathat its
arity is greater than zero). Here is the definition:

complexterm(X) : -
nonvar (X),
functor(X,_,A),
A > 0.
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So much for functors — what about arguments? In addition ® th
predicatefunctor/3, Prolog supplies us with the predicaieg/3 which
tells us about the arguments of complex terms. It takes a eurhb
and a complex terml and returns theNth argument of T in its third
argument. It can be used to access the value of an argument

?7- arg(2,loves(vincent,mia),X).
X = mia
yes

or to instantiate an argument

?7- arg(2,loves(vincent,X) ,mia).
X = mia
yes

Trying to access an argument which doesn’t exist, of coufats:

?7- arg(2,happy(yolanda) ,X).
no

The predicategunctor/3 and arg/3 allow us to access all the basic
information we need to know about complex terms. Howeveldgralso
supplies a third built-in predicate for analysing term estwe, namely
’=..7/2. This takes a complex term and returns a list that has the
functor as its head, and then all the arguments, in orderhasskments
of the tail. So to the query

?- ’=,.’(loves(vincent,mia) ,X)
Prolog will respond
X = [loves,vincent,mial

This predicate (which is called univ) can also be used as dix in
operator. Here are some examples showing various ways ofy usiis
(very useful) tool:

?- cause(vincent,dead(zed)) =.. X.
X = [cause, vincent, dead(zed)]
yes

?7- X =.. [a,b(c),d].
X = a(b(c), d)
yes
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?7- footmassage(Y,mia) =.. X.
Y = _G303

X = [footmassage, _G303, mial
yes

Univ really comes into its own when something has to be donallto
arguments of a complex term. Since it returns the argumestsa dist,
normal list processing strategies can be used to traveesarfpuments.

Strings
Strings are represented in Prolog by a list of character (AS€des.
However, it would be a right kerfuffle to use list notation feimple

string manipulation, so Prolog also offers a user-friendigtation for
strings: double quotes. Try the following query:

?7- 8 = "Vicky".
S = [86, 105, 99, 107, 121]
yes

Here the variables unifies with the string"Vicky", which is a list
containing of five numbers, each of them corresponding to dieracter
codes of the single characters the strings is composed of. iffiStance,
86 is the character code for the character V, 105 is the codethi®
character i, and so on.)

In other words, strings in Prolog are actually lists of nunsbeSeveral
standard predicates are supported by most Prolog dialectsotk with
strings. A particularly useful one imtom_codes/2. This predicate
converts an atom into a string. The following examples ifiate what
atom_codes/2 can do for you:

?7- atom_codes(vicky,X) .
X = [118, 105, 99, 107, 121]
yes

7- atom_codes (’Vicky’,X).
X = [86, 105, 99, 107, 121]
yes

7- atom_codes(’Vicky Pollard’,X).
X = [86, 105, 99, 107, 121, 32, 80, 111, 108]...]
yes
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It also works the other way arounditom_codes/2 can also be used
to generate atoms from strings. Suppose you want to dupliaat atom
abc into the atom abcabc. This is how you could do it:

?- atom_codes(abc,X), append(X,X,L), atom_codes(N,L).

X = [97, 98, 99]
L = [97, 98, 99, 97, 98, 99]
N = abcabc

One last thing you need to know about theom codes/2 predicate
is that it is related to another other built-in predicate, medy
number _codes/2. This predicate behaves in a similar way, but, as the
names suggest, only works for numbers.

4 Operators

As we have seen, in certain cases (for example, when perigrmi
arithmetic) Prolog lets us use operator notations that aseeraser-friendly
than its own internal representations. Indeed, as we shal see,
Prolog even has a mechanism for letting us define our own tgrsraln
this section we'll first take a closer look at the propertidsoperators,
and then learn how to define our own.

Properties of operators

Let's start with an example from arithmetic. Internally,oftrg uses the
expressionis (11,+(2,*(3,3))), but we are free to write the functoss
and + between their arguments, to form the more user-friendlyresgion

11 is 2 + 3 * 3. Functors that can be written between their arguments
are called infix operators. Other examples of infix operatarsProlog
are :-, -=>, ;, ’,’, =, =.., == and so on. In addition to infix
operators there are also prefix operators (which are writtefore their
arguments) and postfix operators (which are written aftEgr example,
7- is a prefix operator, and so is the one-placewhich is used to
represent negative numbers (as inis 3 + -2). An example of a
postfix operator is ther+ notation used in the C programming language
to increment the value of a variable.

When we learned about arithmetic in Prolog, we saw that Brolo
knows about the conventions for disambiguating arithmetipressions.
So when we write2 + 3 * 3, Prolog knows that we mea® + (3 * 3)
and not (2 + 3) * 3. But how does Prolog know this? Because
every operator has a certain precedence. The precedence ©f
greater than the precedence ®f and that's why+ is taken to be the
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main functor of the expressiod + 3 * 3. (Note that Prolog’s internal
representation(2,*(3,3)) is not ambiguous.) Similarly, the precedence
of is is higher than the precedence of, so 11 is 2 + 3 * 3

is interpreted asis(11,+(2,*(3,3))) and not as the (nonsensical)
expression+(is(11,2),*(3,3)). In Prolog, precedence is expressed by
a number between 0 and 1200; the higher the number, the griete
precedence. To give some examples, the precedence isf 700, the
precedence of- is 500, and the precedence efis 400.

What happens when there are several operators with the same
precedence in one expression? We said above that Prolog finds
the query 2 =:= 3 == =:=(2,3) confusing. It doesn't know how
to bracket the expression: Is i&:=(2,==(3,=:=(2,3))) or is it
==(=:=(2,3),=:=(2,3))? The reason Prolog is not able to decide on
the correct bracketing is because and =:= have the same precedence.

In such cases, explicit bracketings must be supplied by tlogrammer.

What about the following query though?

?7- X is 2 + 3 + 4.

Does Prolog find this confusing? Not at all: it deals with itppay
and correctly answerX = 9. But which bracketing did Prolog choose:
is(X,+(2,+(3,4))) or is(X,+(+(2,3),4))? As the following queries
show, it chose the second:

?7- 2+ 3+ 4 =+(2,+(3,4)).
no
7- 2+ 3+ 4 =+(+(2,3),4).
yes

Here Prolog has used information about the associativity +oto
disambiguate:+ is left associative, which means that the expression to
the right of + must have a lower precedence thanitself, whereas
the expression on the left may have the same precedence ashe
precedence of an expression is simply the precedence of &m m
operator, or O if it is enclosed in brackets. The main operafo3 + 4
is +, so that interpretingg + 3 + 4 as +(2,+(3,4)) would mean that
the expression to the right of the first has the same precedence s
itself, which is illegal. It has to be lower.

The operators==, =:=, and is are defined to be non-associative,
which means that both of their arguments must have a loweredence.
Therefore 2 =:= 3 == =:=(2,3) is an illegal expression, since no
matter how you bracket it you'll get a conflick =:= 3 has the same
precedence as=, and 3 == =:=(2,3) has the same precedence as-.
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The type of an operator (infix, prefix, or postfix), its prececks and
its associativity are the three things that Prolog needsntmwkto be able
to translate user-friendly (but potentially ambiguous)eigtor notations
into Prolog’s internal representation.

Defining operators

In addition to providing a user-friendly operator notatidar certain
functors, Prolog also lets you define your own operators. 80 gould,
for example, define a postfix operatdars_dead; then Prolog would
allow you to write zed is_dead as a fact in your database instead of
is_dead(zed).

Operator definitions in Prolog look like this:

:— op(Precedence, Type,Name) .

As we mentioned above, precedence is a number between 0 &@] 12
and the higher the number, the greater the precedence. $ypa iatom
specifying the type and associativity of the operator. le tase of+

this atom isyfx, which says that- is an infix operator; thef represents
the operator, and the and y the arguments. Furthermore, stands for

an argument which has a precedence which is lower than theegeace

of + and y stands for an argument which has a precedence which lower
or equal to the precedence af There are the following possibilities
for type:

infix xfx, xfy, yfx
prefix fx, fy
suffix xf, yf

So your operator definition fois_dead might be as follows:

:- op(500, xf, is_dead).

Here are the definitions for some of the built-in operatorau Yan
see that operators with the same properties can be speciiiedné
statement by giving a list of their names (instead of a singhene) as
the third argument obp.
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:- op( 1200, xfx, [ :-, -=> 1).

:- op( 1200, fx, [ :-, 7= 1).

;- op( 1100, xfy, [ ; 1).

:-= op( 1000, xfy, [ ’,” 1).

:- op( 700, xfx, [ =, is, =.., ==, \==,
=:=, =\=, <, >, =<, >=1])

:- op( 500, yfx, [ +, -1).
:- op( 500, fx, [+, - 1.
:- op( 300, xfx, [ mod 1).
:- op( 200, xfy, [ ~ 1).

One final point should made explicit. Operator definitions’tdspecify
the meaningsof operators, they only describe how they can be used
syntactically. That is, an operator definition doesn’'t saything about
when a query involving this operator will evaluate to trué, merely
extends thesyntax of Prolog. So if the operatois_dead is defined as
above, and you pose the queped is_dead, Prolog won't complain
about illegal syntax (as it would without this definition) tbwill try to
prove the goalis_dead(zed), which is Prolog’s internal representation
of zed is_dead. And this is all operator definitions do — they just tell
Prolog how to translate a user-friendly notation into reedl®y notation.
So, what would be Prolog’s answer to the quetyd is_dead? |t
would be no, because Prolog would try to provies_dead(zed), but
would not find any matching clause in the database. But s@ppeos
extended the database as follows:

;- op(500, xf, is_dead).

kill (marsellus,zed).
is_dead(X) :- kill(_,X).

Now Prolog would answeges to the query.

5 Exercises
Exercise 9.1. Which of the following queries succeed, and which fail?

?7- 12 is 2%6.
7- 14 =\= 2%6.

?- 14 = 2%7.
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14 == 2x%7.
14 \== 2%T7.
14 =:= 2x7.

[1,2,31[d,el] == [1,2,3,d,e].

2+3 == 3+2.

2+3 =:= 3+2.
7-2 =\= 9-2.
p=="p.

p =\= 'p’.
vincent == VAR.

vincent=VAR, VAR==vincent.

Exercise 9.2. How does Prolog respond to the following queries?

.(a,.(,.(c,[1))) = [a,b,c].

(a,.(,.(c, [N

(a,bl [c]].
G, 1), G, 1), C(, [1),00))) = X.

(a,.(b,.(.(c,[1D,[1))) = [a,bl[c]].

Exercise 9.3. Write a two-place predicateermtype (Term,Type) that
takes a term and gives back the type(s) of that term (atom,begm
constant, variable, and so on). The types should be givek badhe
order of their generality. The predicate should behave @ fibllowing

way.

?_

termtype (Vincent,variable) .

yes

?_

termtype(mia,X).
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X = atom ;

X = constant ;

X = simple_term ;
X = term ;

no

7- termtype(dead(zed),X).
X = complex_term ;

X = term ;

no

Exercise 9.4. Write a Prolog program that defines the predicate
groundterm(Term) which tests whether or noferm is a ground term.

Ground terms are terms that don’t contain variables. Heee ewamples

of how the predicate should behave:

7- groundterm(X) .

no

7- groundterm(french(bic_mac,le_bic_mac)).
yes

?7- groundterm(french(whopper,X)).

no

Exercise 9.5. Assume that we have the following operator definitions.

:- op(300, xfx, [are, is_al).
:- op(300, fx, likes).

:— op(200, xfy, and).

:- op(100, fy, famous).

Which of the following are well-formed terms? What are theimma
operators? Give the bracketings.

X is_a witch

harry and ron and hermione are friends
harry is_a wizard and likes quidditch
dumbledore is_a famous wizard

6 Practical Session

To start this session, we'll introduce some built-in predés for printing
terms onto the screen. You should try out the following exi@s@s we
introduce them. The first predicate we want to look atdissplay/1.
Here are some simple examples:
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?7- display(loves(vincent,mia)).
loves(vincent, mia)

yes
?7- display(’jules eats a big kahuna burger’).
jules eats a big kahuna burger

yes

But the really important point aboudiisplay/1, as the following
examples demonstrate, is that it prints Prologiternal representatiorof
terms to the screen:

?7- display(2+3+4).
+(+(2, 3), 4

yes

This property ofdisplay/1 makes it a very useful tool for learning
how operators work in Prolog. So, before going on, try thdofeing
queries. Make sure you understand why Prolog answers theitwdgyes.

?- display([a,b,c]).

?7- display(3 is 4 + 5 / 3).
?7- display(3 is (4 + 5) / 3).
?7- display((a:-b,c,d)).

?7- display(a:-b,c,d).

So display/1 is useful when we want to look at the internal
representation of terms in operator notation. But often veaild/ prefer to
see the user-friendly notation instead. For example, wheadling lists it
is usually more pleasant to sde,b,c] rather than. (a. (b. (c, [1))).
The built-in predicatewrite/1 lets us view terms like this. This
predicate takes a term and prints it to the screen in the ftisedly
notation.

7- write(2+3+4).
2+3+4
yes

7- write(+(2,3)).
2+3
yes
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?- write([a,b,c]).
[a, b, c]
yes

7- write(.(a,.(b,[1))).
[a, bl
yes

And here is what happens when the term to be written contains
variables:

7- write(X).
_G204

X = _G204
yes

?7- X = a, write(X).

yes

The following example shows what happens when you give two
write/1 commands one after the other:

?- write(a) ,write(b).
ab
yes

That is, Prolog just executes one after the other withoutimmutany
space in between the output of the two commands. Of course,cpo
get Prolog to print space by telling it to write the term’:

?7- write(a) ,write(’ ?),write(b).
ab
yes

And if you want more than one space, for example five blanks, gan
tell Prolog to write’ ’,

?- write(a) ,write(’ 7)) ,write(b).
a b

yes
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Another way of printing spaces is by using the prediced®/1. This
takes a number as argument and then prints that number oéspac

?7- write(a),tab(5) ,write(b).
a b

yes

Another predicate useful for formatting is1. This tells Prolog to
make a line-break and to go on printing on the next line.

?7- write(a),nl,write(b).
a

b

yes

Time to apply what you have just learned. In the last chaptersaw
how extra arguments in DCGs could be used to build parse.trEes
example, to the query

s(T, [a,man,shoots,a,woman], [])
Prolog would answer
s(np(det(a),n(man)),vp(v(shoots) ,np(det(a),n(woman)))).

This term is a representation of the parse tree, but it is notegy
readable representation. It would be nicer if Prolog pdntmething
like the following (this style of printing is usually callegretty printing):

s(
np(
det(a)
n(man))
vp (
v(shoots)
np(
det(a)
n(woman))))

Write a predicatepptree/1 that takes a complex term representing a
tree as its argument and prints the tree in a more readabe. for

Time to practice writing operator definitions. In the praati
session of Chapter 7, you were asked to write a DCG generating
propositional logic formulas. The input you had to use was a
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bit awkward though. The formula-(p — ¢) had to be represented
as [not, ’(°, p, implies, g, ’)’]. Now that you know about
operators, you can do things rather more neatly. Write dapeefinitions
for not, and, or, and implies, SO that Prolog accepts (and correctly
brackets) propositional logic formulas. Uskisplay/1 to check your
code. It should yield the following kinds of response:

?7- display(not(p implies q)).
not (implies(p,q)).

yes

?7- display(not p implies q).
implies(not(p),q)

yes






Chapter 10

Cuts and Negation

4 )

This chapter has two main goals:

1. To explain how to control Prolog's back-
tracking behaviour with the help of the cut
predicate.

2. To explain how cut can be packaged into
a more structured form, namely negation as
failure.

- J




186 Learn Prolog Now!

1 The Cut

Automatic backtracking is one of the most characteristiatdees of
Prolog. But backtracking can lead to inefficiency. Somesinferolog
can waste time exploring possibilities that lead nowhere.wbould be
pleasant to have some control over this aspect of its behgvimt so
far we have only seen two (rather crude) ways of doing thisanging
rule order, and changing goal order. But there is another. Wéere is
a built-in Prolog predicate! (the exclamation mark), called cut, which
offers a more direct way of exercising control over the wapl®y looks
for solutions.

What exactly is cut, and what does it do? It's simply a speai@m
that we can use when writing clauses. For example,

pX):- b(X), c(X), !, dX), e(X).

is a perfectly good Prolog rule. As for what cut does, first df &

is a goal thatalways succeeds. Second, and more importantly, it has a
side effect. Suppose that some goal makes use of this clausecdll
this goal the parent goal). Then the cut commits Prolog to emgices
that were made since the parent goal was unified with the lkfidiside

of the rule (including, importantly, the choice of using thparticular
clause). Let's look at an example to see what this means.

First consider the following piece of cut-free code:

pX):- a(X).
pX):- b(X), c(X), dX), e(X).
p(X):- £(X).

a(l). b(). c(). d(2). e(2. £(3).
b(2). «c(2).

If we pose the queryp(X) we will get the following responses:

X=1;
X=2;
X=3;
no

Here is the search tree that explains how Prolog finds thesee th
solutions. Note that it has to backtrack once, namely wheenters the
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second clause fop/1 and decides to unify the first goal with(1)
instead ofb(2).

[7- b(62),c(62),d(62),e(62) |  [?- £(63)

G2 =1 G2 =2 _G3 =3

[7- c.a,e] [7- c«@,d@,e@]

?7- d(1),e(1) 7- d(2),e(2)

But now suppose we insert a cut in the second clause:

p(X):- b(X), c(X), !, dX), e(X).

If we now pose the querp(X) we will get the following responses:
X=1;
no

What's going on here? Let's consider.

1. p(X) is first unified with the first rule, so we get a new goal
a(X). By instantiatingX to 1, Prolog unifiesa(X) with the fact
a(1) and we have found a solution. So far, this is exactly what
happened in the first version of the program.

2. We then go on and look for a second soluti@{X) is unified with
the second rule, so we get the new gaa(&) ,c(X),!,d(X),e(X).
By instantiatingX to 1, Prolog unifiesb(X) with the factb(1),
so we now have the goals(1),!,d(1),e(1). But c(1) is in
the database so this simplifies 1qd(1),e(1).

3. Now for the big change. The goal succeeds (as it always does)
and commits us to the choices made so far. In particular, vee ar
committed to havingX = 1, and we are also committed to using
the second rule.
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4. But d(1) fails. And there’s no way we can re-satisfy the goal
p(X). Sure, if we were allowed to try the valug=2 we could use
the second rule to generate a solution (that's what happéndide
original version of the program). But wean’'t do this: the cut
has removed this possibility from the search tree. And sifireye
were allowed to try the third rule, we could generate the timiu
X=3. But we can't do this: once again, the cut has removed this
possibility from the search tree.

If you look at the search tree, you'll see that this all boilewd to
the following: search stops when the goal1) doesn't lead to any
node where an alternative choice is available. The crossebd search
tree indicate the branches that the cut trimmed away.

<
I

7- a(GD) |

Gl =1 G2 =1 X

N\
[7- c(D,1,dW,e] 27

[7- 1, a(),e]

?7- d(1),e(1)

One point is worth emphasising: the cut only commits us toicd®
made since the parent goal was unified with the left hand sid¢h®
clause containing the cut. For example, in a rule of the form

q:-pl,...,pn, !, rl,...,rm

when we reach the cut it commits us to using this particulausg for
q and it commits us to the choices made when evaluafing. .. ,pn.
However, weare free to backtrack among thei,...,rm and we are
also free to backtrack among alternatives for choices thatewmade
before reaching the goal. A concrete example will make this clear.
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First consider the following cut-free program:

s(X,Y):- q(X,Y).
s(0,0).

qX,Y):= i(X), j(Y).

i(1).
i(2).

j(1).
3(2).
3(3).

Here's how it behaves:

7- s(X,Y).
X=1
Y=1;
X=1
Y=2;
X=1
Y = s
X_
Y=1;
X=2
Y=2;
X=2
Y=23;
X=0
Y = 0;
no

And this is the corresponding search tree:



190 Learn Prolog Now!

|7- qCa4, 69) |

|7- 1(64),j(c8) |

G4 =1 G4 = 2

Suppose we add a cut to the clause definin@:
qX,Y):- i(X), !, j(N.

Now the program behaves as follows:

7- s(X,Y).
X=1
Y=1;
X=1
Y=2;
X=1

Y = ;
X=0

Y = 0;

no

Let's see why.

1. s(X,Y) is first unified with the first rule, which gives us a new
goal q(X,Y).
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2. q(X,Y) is then unified with the third rule, so we get the new
goals i (X),!,j(Y). By instantiatingX to 1, Prolog unifiesi(X)
with the facti(1). This leaves us with the goadl, j(Y). The cut,
of course, succeeds, and commits us to the choices made .so far

3. But what are these choices? These: that 1, and that we are
using this clause. But note: we hawet yet chosen a value foy.

4. Prolog then goes on, and by instantiatingto 1, Prolog unifies
j(Y) with the fact j(1). So we have found a solution.

5. But we can find more. Prolog free to try another value for.
So it backtracks and sets to 2, thus finding a second solution.
And in fact it can find another solution: on backtracking agat
setsY to 3, thus finding a third solution.

6. But those are all alternatives fgr(X). Backtracking to the left of
the cut is not allowed, so itan’t resetX to 2, so it won'’t find the
next three solutions that the cut-free program found. Backing
over goals that were reached befosé€X,Y) is allowed however,
so that Prolog will find the second clause for2.

Here’s the corresponding search tree:
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2 Using Cut

Well, we now know what cut is. But how do we use it in practice,
and why is it so useful? As a first example, let's define a (oced)f
predicatemax/3 which takes integers as arguments and succeeds if the
third argument is the maximum of the first two. For example tueries

7- max(2,3,3).
and
7- max(3,2,3).
and
?- max(3,3,3).
should succeed, and the queries
?- max(2,3,2).
and
?- max(2,3,5).

should fail. And of course, we also want the program to workemwh
the third argument is a variable. That is, we want the progtanbe
able to find the maximum of the first two arguments for us:

?7- max(2,3,Max) .

Max = 3
yes

?7- max(2,1,Max).

Max = 2
yes

Now, it is easy to write a program that does this. Here's a first
attempt:

max(X,Y,Y):- X =< Y.
max(X,Y,X):- X>Y.

This is a perfectly correct program, and we might be tempietply to
stop here. But we shouldn’t: it's not good enough.
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What's the problem? There is a potential inefficiency. Swggpthis
definition is used as part of a larger program, and somewh&yega
the way max(3,4,Y) is called. The program will correctly seY=4.
But now consider what happens if at some stage backtrackingrced.
The program will try to re-satisfynax(3,4,Y) using the second clause.
This is completely pointless: the maximum 6fand 4 is 4 and that'’s
that. There is no second solution to find. To put it another :wthe
two clauses in the above program are mutually exclusive: hd first
succeeds, the second must fail and vice versa. So attemiotingrsatisfy
this clause is a complete waste of time.

With the help of cut, this is easy to fix. We need to insist that
Prolog should never try both clauses, and the following cddes this:

max(X,Y,Y) :- X =< Y,!.
max(X,Y,X) :- X>Y.

Note how this works. Prolog will reach the cut ifax(X,Y,Y) is
called andX =< Y succeeds. In this case, the second argument is the
maximum, and that's that, and the cut commits us to this @oi®n
the other hand, iX =< Y fails, then Prolog goes onto the second clause
instead.

Note that this cut doesot change the meaning of the program. Our
new code gives exactly the same answers as the old one, bumdte
efficient. In fact, the program isexactly the same as the previous
version, except for the cut, and this is a pretty good sigrt tha cut
is a sensible one. Cuts like this, which don’t change the ringanf a
program, have a special name: they're called green cuts.

But some readers will dislike this code. After all, isn't trsecond
line redundant? If we have to use this line, we already knoat tihe
first argument is bigger that the second. Couldn’t we squesze a
little more efficiency with the help of our new cut construdiet’s try.
Here’s a first (faulty) attempt:

max(X,Y,Y) :- X =< Y, !.
max(X,Y,X).

Note that is the same as our earlier green guk/3, except that we
have got rid of the> test in the second clause. How good is it? Well,
for some queries it's fine. In particular, it answers coflseathen we
pose queries in which the third argument is a variable. Famgpte:

7- max(100,101,X) .
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X =101
yes

and

?7- max(3,2,X).

X=3
yes

Nonetheless, it'snot the same as the green cut program: the new
max/3 doesnot work correctly. Consider what happens when all three
arguments are instantiated. For example, consider theyquer

?7- max(2,3,2).

Obviously this query should fail. But in our new version, itllwsucceed!
Why? Well, this query simply won’'t unify with the head of thesti
clause, so Prolog goes straight to the second clause. Andqtieey
will unify with the second clause, and (trivially) the quesycceeds! So
maybe getting rid of that test wasn't quite so smart after all.

But there is another way. The problem with the new code is lsimp
that we carried out variable unificatiobefore we traversed the cut.
Suppose we handle our variables a little more intelligertlging three
variables instead of two) and explicitly unifgfter we have crossed the
cut:

max(X,Y,Z) (- X =<Y,!, Y = Z.
max(X,Y,X).

As the reader should check, this program does work, and (atoped
for) it avoids the explicit comparison made in the secondus#aof our
green cut version ofax/3.

But there is an important difference between the new versibrthe
program and the green cut version. The cut in the new progsam i
classic example of what is known as a red cut. As this termmplis
supposed to suggest, such cuts are potentially dangerobg? \Because
if we take out such a cut, wdon't get an equivalent program. That is,
if we remove the cut, the resulting code dasst compute the maximum
of two numbers any more. To put it another way, the presencéhef
cut is indispensableto the correct functioning of the program. (This was
not the case in the green cut version — the cut there merelyowep
efficiency.) Because red cuts are indispensable cuts, fiesence means
that programs containing them are not fully declarative.wNoed cuts
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can be useful on occasions, but beware! Their use can leaditittes
programming mistakes and make code hard to debug.

So, what to do? It's probably best to work as follows. Try aret g
good, clear, cut-free program working, and only then try tapiiove its
efficiency by using cuts. Use green cuts whenever possibled &uts
should be used only when absolutely necessary, and it's a gidea to
explicity comment on any red cuts in your code. Working thiay will
maximise your chances of striking a good balance betweetardtive
clarity and procedural efficiency.

3 Negation as Failure

One of Prolog’s most useful features is the simple way it le$sstate
generalisations. To say that Vincent enjoys burgers we \wrie:

enjoys(vincent,X) :- burger(X).

But in real life rules have exceptions. Perhaps Vincent dbdge
Big Kahuna burgers. That is, perhaps the correct rule isyre&lincent
enjoys burgersexceptBig Kahuna burgers. Fine. But how do we state
this in Prolog?

As a first step, let’s introduce another built-in predicateil/0. As
its name suggest£ail/0 is a special symbol that will immediately fail
when Prolog encounters it as a goal. That may not sound tofuluse
but remember:when Prolog fails, it tries to backtrack Thus fail/0
can be viewed as an instruction to force backtracking. Ancerwhised
in combination with cut, whichblocks backtracking,fail/0 enables us
to write some interesting programs, and in particular, is les define
exceptions to general rules.

Consider the following code:

enjoys(vincent,X) :- big_kahuna_burger(X),!,fail.
enjoys(vincent,X) :- burger(X).

burger (X) :- big_mac(X).
burger (X) :- big_kahuna_burger(X).
burger (X) :- whopper (X).

big_mac(a).
big_kahuna_burger (b) .
big_mac(c).
whopper (d) .
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The first two lines describe Vincent's preferences. The kistlines
describe a world containing four burgers, b, ¢, and d. We're also
given information about what kinds of burgers they are. Givhat
the first two lines really do describe Vincent's preferen¢dgst is, that
he likes all burgers except Big Kahuna burgers) then he sheuloy
burgersa, ¢ and d, but notb. And indeed, this is what happens:

?- enjoys(vincent,a).
yes

?7- enjoys(vincent,b).
no

?- enjoys(vincent,c).
yes

?- enjoys(vincent,d).
yes

How does this work? The key is the combination lofand fail/0 in
the first line (this even has a name: it's called the cut-faimbination).
When we pose the quergnjoys(vincent,b), the first rule applies,
and we reach the cut. This commits us to the choices we havee,mad
and in particular, blocks access to the second rule. But tlvenhit
fail/0. This tries to force backtracking, but the cut blocks it, assal
our query fails.

This is interesting, but it's not ideal. For a start, notetttiee ordering
of the rules is crucial: if we reverse the first two lines, wen’'t get
the behaviour we want. Similarly, the cut is crucial: if wemmave it,
the program doesn’t behave in the same way (so this redacut). In
short, we've got two mutually dependent clauses that makeéngic use
of the procedural aspects of Prolog. Something useful isriglegoing
on here, but it would be better if we could extract the usefait @nd
package it in a more robust way.

And we can. The crucial observation is that the first clause is
essentially a way of saying that Vincent doest enjoy X if X is a Big
Kahuna burger. That is, the cut-fail combination seems toofbering us
some form of negation. And indeed, this is the crucial gdisatéon:
the cut-fail combination lets us define a form of negatiorlechinegation
as failure. Here's how:

neg(Goal) :- Goal,!,fail.
neg(Goal) .
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For any Prolog goalpeg(Goal) will succeed precisely ifioal doesnot
succeed.

Using our newneg/1 predicate, we can describe Vincent's preferences
in a much clearer way:

enjoys(vincent,X) :- burger(X),
neg(big_kahuna_burger(X)).

That is, Vincent enjoys X if X is a burger and X is not a Big Kahun
burger. This is quite close to our original statement: Virtcenjoys
burgers, except Big Kahuna burgers.

Negation as failure is an important tool. Not only does iteoffiseful
expressivity (notably, the ability to describe exceptjoitsalso offers it
in a relatively safe form. By working with negation as fadufinstead
of with the lower level cut-fail combination) we have a betighance
of avoiding the programming errors that often accompany ube of red
cuts. In fact, negation as failure is so useful that it comast-m as
part of standard Prolog, so we don’t have to define it at allstemdard
Prolog the operatoA+ means negation as failure, so we could define
Vincent's preferences as follows:

enjoys(vincent,X) :- burger(X),
\+ big_kahuna_burger(X).

Nonetheless, a couple of words of warning are in ord#mn’t make
the mistake of thinking that negation as failure works juge Ilogical
negation. It doesn’t. Consider again our burger world:

burger (X) :- big_mac(X).
burger (X) :- big_kahuna_burger(X).
burger (X) :- whopper (X).

big_mac(a).
big_kahuna_burger (b) .
big_mac(c).
whopper (d) .

If we pose the quergnjoys(vincent,X) we get the correct sequence
of responses:

X =a;
X=c;
X=4d ;

no
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But now suppose we rewrite the first line as follows:
enjoys(vincent,X) :- \+ big_kahuna_burger(X), burger(X).

Note that from a declarative point of view, this should make n
difference: after all,burger(x) and not big kahuna burger($ logically
equivalent tonot big kahuna burger(x) and burger(xJhat is, no matter
what the variablex denotes, it is impossible for one of these expressions
to be true and the other false. Nonetheless, here’'s whatenapwhen
we pose the same query:

?7- enjoys(vincent,X).

no

What's going on? Well, in the modified database, the first ghin
that Prolog has to check is wheth&F big_kahuna_burger (X) holds,
which means that it must check whethietg_kahuna_burger (X) fails.
But this succeeds. After all, the database contains thernrdtion
big_kahuna_burger(b). So the query\+ big_kahuna_burger (X)
fails, and hence the original query does too. In a nutshiak ¢rucial
difference between the two programs is that in the originaision (the
one that works right) we usé&+ only after we have instantiated the
variable X. In the new version (which goes wrong) we use before
we have done this. The difference is crucial.

Summing up, we have seen that negation as failure is not dbgic
negation, and that it has a procedural dimension that mustniderstood.
Nonetheless, it is an important programming construct:sitgenerally a
better idea to try use negation as failure than to write codetaining
heavy use of red cuts. Nonetheless, “generally” does notnnialvays”.
There are times when it is better to use red cuts.

For example, suppose that we need to write code to capture the
following condition: p holds if a and b hold, or if a does not hold and
c holds too This can be captured with the help of negation as failure
very directly:

p :— a,b.

p - \+a, c.

But suppose that is a very complicated goal, a goal that takes a
lot of time to compute. Programming it this way means we mayeha
to computea twice, and this may mean that we have unacceptably slow
performance. If so, it would be better to use the followingpgram:
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p:-a,!,b.

p :- c.

Note that this is a red cut: removing it changes the meaninghef
program.

When all’s said and done, there are no universal guidelihas will
cover all the situations you are likely to run across. Progréng is as
much an art as a science: that's what makes it so interes¥iog. need
to know as much as possible about the language you are workitig
(whether it's Prolog, Java, Perl, or whatever), understéimel problem
you are trying to solve, and know what counts as an acceptailidion.
And then: go ahead and try your best!

4 Exercises

Exercise 10.1. Suppose we have the following database:
p().
p(2) :- 1.
p(3).

Write all of Prolog’s answers to the following queries:
7- p(X).
7- p(X),p(N).

7- p(X), !, p(Y).

Exercise 10.2. First, explain what the following program does:
class(Number,positive) :- Number > O.
class(0,zero).
class(Number,negative) :- Number < O.

Second, improve it by adding green cuts.

Exercise 10.3. Without using cut, write a predicateplit/3 that splits
a list of integers into two lists: one containing the postienes (and
zero), the other containing the negative ones. For example:

split([3,4,-5,-1,0,4,-9],P,N)

should return:
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o
]

[3,4,0,4]

N

[-5,-1,-9].

Then improve this program, without changing its meaninghwihe help
of the cut.

Exercise 10.4.

Recall that in Exercise 3.3 we gave you the following knowked
base:

directTrain(saarbruecken,dudweiler).
directTrain(forbach, saarbruecken).
directTrain(freyming,forbach).
directTrain(stAvold,freyming) .
directTrain(fahlquemont,stAvold) .
directTrain(metz,fahlquemont) .
directTrain(nancy,metz) .

We asked you to write a recursive predicateavelFromTo/2 that told
us when we could travel by train between two towns.

Now, it's plausible to assume that whenever it is possibletake a
direct train from A to B, it is also possible to take a direcair from
B to A. Add this information to the database. Then write a et
route/3 which gives you a list of towns that are visited by taking the
train from one town to another. For instance:

?- route(forbach,metz,Route).
Route = [forbach,freyming,stAvold,fahlquemont,metz]

Exercise 10.5. Recall the definition of jealousy given in Chapter 1.
jealous(X,Y):- loves(X,Z), loves(Y,Z).

In a world where both Vincent and Marsellus love Mia, Vincevitl be
jealous of Marsellus, and Marsellus of Vincent. But Manselwill also
be jealous of himself, and so will Vincent. Revise the Profigfinition
of jealousy in such a way that people can't be jealous of tledres.

5 Practical Session

The purpose of this session is to help you get familiar withiscand
negation as failure. First some keyboard exercises:
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1. Try out all three versions of theax/3 predicate defined in the
text: the cut-free version, the green cut version, and thee aet
version. As usual, “try out” means “run traces on”, and yowoust
make sure that you trace queries in which all three argumards
instantiated to integers, and queries where the third aeginis
given as a variable.

2. Ok, time for a burger. Try out all the methods discussedhe t
text for coping with Vincent's preferences. That is, try oilte
program that uses a cut-fail combination, the program thedsu
negation as failure correctly, and also the program that kst
up by using negation in the wrong place.

Now for some programming:

1. Define a predicateau/2 ("not unifiable”) which takes two terms
as arguments and succeeds if the two terms do not unify. For
example:

nu(foo,foo).
no

nu (foo,blob).
yes

nu(foo,X).
no

You should define this predicate in three different ways:

(a) First (and easiest) write it with the help efand \+.

(b) Second write it with the help of, but don't use\+.

(c) Third, write it using a cut-fail combination. Don’t use and
don't use \+.

2. Define a predicateinifiable(Listl,Term,List2) where List2
is the list of all members ofListl that unify with Term. The
elements ofList2 should not be instantiated by the unification.
For example

unifiable([X,b,t(Y)],t(a),List]

should yield
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List = [X,t(V].

Note thatX and Y are still not instantiated. So the tricky part is:
how do we check that they unify with (a) without instantiating
them?

(Hint: consider using tests of the fori+ terml = term2. Why?
Think about it. You might also like to think about tests of the
form \+ \+ terml = term2.)



Chapter 11

Database Manipulation and
Collecting Solutions

4 )

This chapter has two main goals:

1. To discuss database manipulation in Prolog.

2. To discuss built-in predicates that let us
collect all solutions to a problem into a single
list.

- J
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1 Database Manipulation
Prolog has four database manipulation commands: assémctreasserta,
and assertz. Let's see how these are used. Suppose we startamvi
empty database. So if we give the command:

?7- listing.
then Prolog will simply respond yes; the listing (of course)empty.

Suppose we now give this command:
7- assert (happy(mia)).

This succeeds agsert/1 commandsalways succeed). But what is
important is not that it succeeds, but the side-effect it las the
database. For if we now give the command

?- listing.
we get:
happy (mia) .

That is, the database is no longer empty: it now contains Hw We
asserted.
Suppose we then made four more assert commands:

?- assert (happy(vincent)).
yes

?7- assert (happy(marcellus)).
yes

?- assert (happy(butch)).
yes

?- assert (happy(vincent)).
yes

and then ask for a listing:

?- listing.

happy (mia) .
happy(vincent) .
happy (marcellus).
happy (butch) .
happy(vincent) .
yes
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All the facts we asserted are now in the knowledge base. No&t t
happy (vincent) is in the knowledge base twice. As we asserted it
twice, this seems sensible.

The database manipulations we have been making have chahged
meaning of the predicateappy/1. More generally, database manipulation
commands give us the ability to change the meaning of pregicanhile
we are running programs. Predicates whose definitions ehahging
run-time are called dynamic predicates, as opposed to #iie firedicates
that we have previously dealt with. Most Prolog interpretérsist that
we explicitly declare the predicates that we wish to be dyinanm\e
will soon examine an example involving dynamic predicatbst let's
first complete our discussion of the database manipulatmnntands.

So far we have only asserted facts into the database, but wealsa
assert new rules. Suppose we want to assert the rule thagoemewho
is happy is naive. That is, suppose we want to assert that:

naive(X) :- happy(X) .
We can do this as follows:
assert( (naive(X):- happy(X)) ).

Note the syntax of this commandhe rule we are asserting is enclosed
in a pair of brackets If we now ask for a listing we get:

happy (mia) .
happy(vincent) .
happy (marcellus).
happy (butch) .
happy(vincent) .

naive(A):-
happy (4) .

Now that we know how to assert new information into the dateba
we should also learn how to remove information when we no dong
need it. There is an inverse predicate dgsert/1, namelyretract/1.
For example, if we carry straight on from the previous examply
giving the command:

7- retract (happy(marcellus)).

and then list the database, we get:
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happy (mia) .
happy(vincent) .
happy (butch) .
happy(vincent) .

naive(A) :-
happy (4) .

That is, the facthappy(marcellus) has been removed.
Suppose we go on further, and say

?- retract (happy(vincent)).
and then ask for a listing. We get:

happy (mia) .
happy (butch) .
happy(vincent) .

naive(A) :-
happy (4) .

Note that the first occurrence dfappy(vincent), and only the first
occurrence, was removed.

To remove all of our assertions contributing to the defimitiof the
predicatehappy/1 we can use a variable:

?7- retract (happy (X)) .

X = mia ;

X = butch ;

X = vincent ;
no

A listing reveals that the database is now empty, except far tule
naive(A) :- happy(A).

?7- listing.
naive(A) :-
happy (A) .
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If we want more control over where the asserted material &ceul,
there are two variants odissert/1, namely:
1. assertz. Places asserted material atehd of the database.
2. asserta. Places asserted material atbiginningof the database.

For example, suppose we start with an empty database, amdwhe
give the following command:

assert( p(b) ), assertz( p(c) ), asserta( p(a) ).
Then a listing reveals that we now have the following databas

?- listing.

pa).
p(b).
p(c).
yes

Database manipulation is a useful technique. It is espgaiedeful for
storing the results to computations, so that if we need to tasksame
question in the future, we don't need to redo the work: we josk up
the asserted fact. This technique is called memoisationcagching, and
in some applications it can greatly increase efficiency. efden simple
example of this technique at work:

:— dynamic lookup/3.

add_and_square(X,Y,Res) : -
lookup(X,Y,Res), !.

add_and_square(X,Y,Res) : -
Res is (X+Y)*(X+Y),
assert(lookup(X,Y,Res)).

What does this program do? Basically, it takes two numbersnd a
Y, adds X to Y, and then squares the result. For example we: have

?7- add_and_square(3,7,X).

X = 100
yes
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But the important point is:how does it do this? First, note that we
have declaredlookup/3 as a dynamic predicate. We need to do this as
we plan to change the definition dfookup/3 during run-time. Second,
note that there are two clauses definiadd_and_square/3. The second
clause performs the required arithmetic calculation argkrs the result
to the Prolog database using the predicatekup/3 (that is, it caches
the result). The first clause checks the Prolog database doifséhe
calculation has already been made in the past. If it has bden,
program simply returns the result, and the cut preventsadmfrentering
the second clause.

Here’'s an example of the program at work. Suppose we giveogrol
another query

?- add_and_square(3,4,Y).

Y = 49
yes

If we now ask for a listing we see that the database now costain

lookup(3, 7, 100).
lookup(3, 4, 49).

Should we later ask Prolog to add and square 3 and 4, it wduldn’
perform the calculations again. Rather, it would just netthre previously
calculated result.

Question: how do we remove all these new facts when we no tonge
want them? After all, if we give the command

?- retract (lookup(X,Y,Z)).

Prolog will go through all the facts one by one and ask us wdrethe
want to remove them! But there’s a much simpler way. Simplg tise
command

?7- retractall (lookup(_,_,_)).

This will remove all facts aboulookup/3 from the database.

To conclude our discussion of database manipulation, a wafrd
warning. Although it is a useful technique, database mdaijmn can
lead to dirty, hard to understand, code. If you use it heawlya
program with lots of backtracking, understanding what isngoon can
be a nightmare. It is a non-declarative, non logical, featof Prolog
that should be used cautiously.



Chapter 11: Database Manipulation and Collecting Solstion 209

2 Collecting Solutions

There may be many solutions to a query. For example, suppesare/
working with the database

child(martha,charlotte).
child(charlotte,caroline).
child(caroline,laura).
child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),
descend(Z,Y).

Then if we pose the query
descend (martha,X).

there are four solutions (namely=charlotte, X=caroline, X=laura,
and X=rose).

However Prolog generates these solutions one by one. Suswgetive
would like to haveall the solutions to a query, and we would like them
handed to us in a neat, usable, form. Prolog has three huptédicates
that do this: findall, bagof and setof. In essence, all thesslipates
collect all the solutions to a query and put them in a sings 4+ but
there are important differences between them, as we shall se

The findall/3 predicate
The query

7- findall(Object,Goal,List).

produces a listList of all the objectsObject that satisfy the goal
Goal. Often Object is simply a variable, in which case the query can
be read as:Give me a list containing all the instantiations d@fbject
which satisfyGoal.

Here’'s an example. Suppose we’re working with the above bda&
(that is, with the information abouthild and the definition odescend).
Then if we pose the query

?- findall(X,descend(martha,X),Z).

we are asking for a listZz containing all the values oKk that satisfy
descend (martha,X). Prolog will respond
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X
YA

_7489
[charlotte,caroline,laura,rosel

But Object doesn’t have to be a variable, it may be a complex term
that just contains a variable that also occursGiwel. For example, we
might decide that we want to build a new predicdtomnMartha/1 that
is true only of descendants of Martha. We could do this witl tjuery:

?- findall(fromMartha(X) ,descend(martha,X),Z).

That is, we are asking for a lisz containing all the instantiations of
fromMartha(X) that satisfy the goalescend(martha,X). Prolog will
respond

X
YA

_7616
[fromMartha(charlotte) ,fromMartha(caroline),
fromMartha(laura) ,fromMartha(rose)]

What happens if we ask the following query?
?- findall(X,descend(mary,X),Z).

As there are no solutions for the goalescend(mary,X) in the
knowledge basefindall/3 returns an empty list.

Note that the first two arguments afindall/3 typically have (at
least) one variable in common. When usifigndall/3, we normally
want to know what solutions Prolog finds for certain variabia the
goal, and we tell Prolog which variables in Goal we are irgyé in
by building them into the first argument dfindall/3.

You might encounter situations, however, wheteéndall/3 does
useful work although the first two arguments don’t share aayiables.
For example, if you are not interested in who exactly is a eledant
of Martha, but only in how many descendants Martha has, you wse
the following query to find out:

?- findall(Y,descend(martha,X),Z), length(Z,N).

The bagof/3 predicate

The findall/3 predicate is useful, but in certain respects it is rather
crude. For example, suppose we pose the query

?- findall(Child,descend(Mother,Child),List).

We get the response
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Child = _6947

Mother = _6951

List = [charlotte,caroline,laura,rose,caroline,
laura,rose,laura,rose,rose]

Now, this is correct, but sometimes it would be useful if wedha
separate list for each of the different instantiationsVMether.
This is whatbagof/3 lets us do. If we pose the query

7- bagof (Child,descend (Mother,Child) ,List).
we get the response

Child = _7736
Mother = caroline
List = [laura,rose] ;

Child = _7736
Mother = charlotte
List = [caroline,laura,rose] ;

Child = _7736
Mother = laura
List = [rose] ;

Child = _7736

Mother = martha

List = [charlotte,caroline,laura,rose] ;
no

That is, bagof/3 is more fine-grained tharfindall/3. It gives us
the opportunity to extract the information we want in a moteictured
way. Moreover,bagof/3 can also do the same job &indall/3, with
the help of a special piece of syntax, namely

7- bagof (Child,Mother~descend(Mother,Child),List).

This says: give me a list of all the values ofchild such that
descend (Mother,Child), and put the result in a list, but don’t worry
about generating a separate list for each value Mdéther. So posing
this query yields:

Child = _7870

Mother = _7874

List = [charlotte,caroline,laura,rose,caroline,
laura,rose,laura,rose,rose]
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Note that this is exactly the response tifatmdall/3 would have given
us. Still, if this is the kind of query you want to make (and ftem is)
it's simpler to usefindall/3, because then you don’t have to bother
explicitly write down the conditions using.

There is one important difference betweétindall/3 and bagof/3,
namely thatbagof/3 fails if the goal that is specified in its second
argument is not satisfied (remember, thatndall/3 returns the empty
list in such cases). So the quebagof (X,descend(mary,X),Z) yields
no.

One final remark. Consider again the query

?- bagof (Child,descend(Mother,Child),List).

As we saw above, this has four solutions. But, once againjo@ro
generates them one by one. Wouldn't it be nice if we could ecoll
them all into one list?

And we can. The simplest way is to uséndall/3. The query

?- findall(List,
bagof (Child,descend (Mother,Child) ,List),
Z).

collects all of bagof/3’s responses into one list:

List = _8293

Child = _8297

Mother = _8301

Z = [[laura,rose], [caroline,laura,rose], [rose],
[charlotte,caroline,laura,rose]]

Another way to do it is withbagof/3:

?7- bagof (List,
Child"Mother bagof (Child,descend (Mother,Child),List),
Z).

List = _2648

Child = _2652

Mother = _2655

Z = [[laura,rose], [caroline,laura,rose], [rose],
[charlotte,caroline,laura,rose]]

This may not be the sort of thing you need to do very often, hut i
does show the flexibility and power offered by these prediat
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The setof/3 predicate

The setof/3 predicate is basically the same amgof/3, but with
one useful difference: the lists it contains apedered and containno
redundancieqthat is, no list contains repeated items).

For example, suppose we have the following database

age (harry,13).
age(draco,14).
age(ron,13).

age (hermione,13).
age (dumbledore,60) .
age(hagrid,30).

Now suppose we want a list of everyone whose age is recorded in
the database. We can do this with the query:

?7- findall(X,age(X,Y),0ut).
X 8443

Y 8448
Out = [harry,draco,ron,hermione,dumbledore,hagrid]

But maybe we would like the list to be ordered. We can achiéig t
with the following query:

7- setof (X,Y age(X,Y),0ut).

(Note that, just as withbagof/3, we have to tell setof/3 not to
generate separate lists for each valueYpfand again we do this with
the =~ symbol.) This query yields:

X = _8711
Y = _8715
Out = [draco,dumbledore,hagrid,harry,hermione,ron]

Note that the list is alphabetically ordered.

Now suppose we are interested in collecting together all diges
which are recorded in the database. Of course, we could do with
the following query:

?7- findall(Y,age(X,Y),0ut).
Y _8847

X = _88561
Out = [13,14,13,13,60,30]
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But this output is rather messy. It is unordered and contegpstitions.
By using setof/3 we get the same information in a neater form:

?7- setof (Y,X"age(X,Y),0ut).

Y = _8981
X = _8985
Out = [13,14,30,60]

Between them, these three predicates offer us a great ddbexdiility
when it comes to collecting solutions. For many purposelswal need
is findall/3, but if we need morepagof/3 and setof/3 are there
waiting to help us out. But bear in mind that there is an imgmufrt
difference betweenfindall/3 on the one hand andagof/3 and
setof/3 on the other:findall/3 will return an empty list if the goal
has no solutions, whereasagof/3 and setof/3 would fail in such a
situation.

3 Exercises

Exercise 11.1. Suppose we start with an empty database. We then give
the command:

assert(q(a,b)), assertz(q(1,2)), asserta(q(foo,blug)).

What does the database now contain?
We then give the command:

retract(q(1,2)), assertz( (p(X) :- h(X)) ).

What does the database now contain?
We then give the command:

retractall(q(_,_)).

What does the database now contain?
Exercise 11.2. Suppose we have the following database:

q(blob,blug).
q(blob,blag) .
q(blob,blig).
q(blaf,blag) .
q(dang,dong) .
q(dang,blug) .
q(flab,blob).
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What is Prolog’s response to the queries:

findall(X,q(blob,X),List).
findall(X,q(X,blug),List).
findall(X,q(X,Y),List).
bagof (X,q(X,Y),List).
setof (X,Y"q(X,Y),List).

Exercise 11.3. Write a predicatesigma/2 that takes an integen > 0
and calculates the sum of all integers from 11to For example:

7- sigma(3,X).
X=6

yes

?7- sigma(5,X).
X =15

yes

Write the predicate so that results are stored in the datalfteere
should never be more than one entry in the database for edcie)va
and are reused whenever possible. For example, suppose ke tma
following query:

7- sigma(2,X).
X=3

yes

?- listing.
sigmares(2,3).

Then, if we go on to ask
7- sigma(3,X).

Prolog should not calculate everything new, but should fet result for
sigma(2,3) from the database and only add 3 to that. It should then
answer:

X=6

yes

?- listing.
sigmares(2,3).
sigmares(3,6).
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4 Practical Session
Try the following two programming exercises:

1. Sets can be thought of as lists that don’'t contain any tepea
elements. For examplela,4,6] is a set, but[a,4,6,a] is not
(as it contains two occurrences af). Write a Prolog program
subset/2 that is satisfied when the first argument is a subset
of the second argument (that is, when every element of thé firs
argument is a member of the second argument). For example:

?7- subset([a,b], [a,b,c])
yes

?7- subset([c,b]l, [a,b,c])
yes

?- subset([],[a,b,c])
yes

Your program should be capable of generating all subsetsnof a
input set by backtracking. For example, if you give it as inpu

7- subset (X, [a,b,c])
it should successively generate all eight subsetdafb,c].

2. Using thesubset predicate you have just written, arfdndall/3,
write a predicatepowerset/2 that takes a set as its first argument,
and returns the powerset of this set as the second argumiem. (
powerset of a set is the set of all its subsets.) For example:

?- powerset([a,b,c],P)
should return
P = [[1,[a],[b],[c],[a,b],[a,c],[b,c],[a,b,c]]

It doesn’t matter if the sets are returned in some other orBer
example,

P = [[a], [b], [c],[a,b,c],[],[a,b],[a,c],[b,c]]

is fine too.



Chapter 12

Working With Files

4 )

This chapter is concerned with various aspect of
file handling and modularity. We will learn three
things:

1. How predicate definitions can be spread across
different files.

2. How to write modular software systems.

3. How to write results to files and how to read
input from files.

\ )
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1 Splitting Programs over Files

By this stage you have written lots of programs that use tredlipates
append/3 and member/2. What you probably did each time you needed
one of them was to go back to the definition and copy it over t® th
file where you wanted to use it. And maybe, after having dore th
few times, you started thinking that it was quite annoyingvihg to
copy the same predicate definitions over and over again — Heasant

it would be if you could define them somewhere once and for all a
then simply access them whenever you needed them. Well, sthatds
like a pretty sensible thing to ask for and, of course, Prabdigrs you
ways of doing it.

Reading in programs
In fact, you already know a way of telling Prolog to read in gcate
definitions that are stored in a file, namely the

[FileName1i]

command. You have been using queries of this form all alongetb
Prolog to consult files. But there are two more useful things ghould
know about it. First, you can consult many files at once by reayi

[FileNamel,FileName?2, ... ,FileNameN]

instead. Second, and more importantly, file consultatioesdwot have
to be performed interactively. If you put

:— [FileNamel,FileName2,...,FileNameN].

at the top of your program file (sayain.pl) you are telling Prolog to
first consult the listed files before going on to read in the @syour
program.

This feature gives us a simple way of re-using definitions. r Fo
example, suppose that you keep all the predicate definifiondasic list
processing (such asppend/3, member/2, reverse/2, and so on) in a
file called 1istPredicates.pl. If you want to use them, simply put

:— [listPredicates].

at the top of the file containing the program that needs themulo@
will consult 1istPredicates when reading in that file, and all the
predicate definitions inlistPredicates become available.

There’s one practical point you should be aware of. When dgrol
loads files, it doesn’t normally check whether the files realeed to
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be consulted. If the predicate definitions provided by oneth#d files
are already in the database because that file was consulexibysly,
Prolog will still consult it again, although it doesn’t nedd. This can
be annoying if you are consulting very large files.

The built-in predicateensure_loaded/1 behaves more intelligently in
this respect. It works as follows. On encountering the feifg directive

:— ensure_loaded([listPredicates]).

Prolog checks whether the fileistPredicates.pl has already been
loaded and only loads it again if it has changed since the lteding.

Modules

Now imagine that you are writing a program that manages a enovi
database. You have designed a predigaténtActors which displays
all actors starring in a particular film, and a predicaieintMovies
which displays all movies directed by a particular filmmakeBoth
definitions are stored in different files, nameprintActors.pl and
printMovies.pl, and both use an auxiliary predicatdsplayList/1.
Here’s the first file:

% This is the file: printActors.pl

printActors(Film) : -
setof (Actor,starring(Actor,Film) ,List),
displayList(List).

displayList([]):- nl.

displayList ([X|L]):-
write(X), tab(1),
displayList(L).

And here’s the second:

% This is the file: printMovies.pl

printMovies(Director):-
setof (Film,directed(Director,Film) ,List),
displayList(List).

displayList([]):- nl.

displayList([XIL]):-
write(X), nl,
displayList(L).
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Note thatdisplayList/1 has different definitions in the two files:
the actors are printed in a row (usingb/1), and the films are printed
in a column (usingnl/0). Will this lead to conflicts in Prolog? Let's
see. We'll load both programs by placing the statements

% This is the file: main.pl

:— [printActors].
:— [printMovies].

at the top of the main file. Consulting the main file will evoke a
message that looks something like the following:

?7- [main].

{consulting main.pl...}

{consulting printActors.pl...}

{printActors.pl consulted, 10 msec 296 bytes}

{consulting printMovies.pl...}

The procedure displayList/1 is being redefined.
0l1d file: printActors.pl
New file: printMovies.pl

Do you really want to redefine it? (y, n, p, or 7)

What has happened? Well, as both filggintActors.pl and
printMovies.pl define a predicate calledisplaylList/1, Prolog needs
to choose one of the two definitions (it can’'t have two diffare
definitions for one predicate in its knowledge base).

What to do? Well, perhaps in some of these situations youlyreal
do want to redefine a predicate. But here you don't — you ward tw
different definitions because you want movies and actorsetalisplayed
differently. One way of dealing with this is to give a diffetename to
one of the two predicates. But let's face it, this is clumsypuYwant to
think of each file as a conceptually self-contained entitgy ydon't want
to waste time and energy thinking about how you named presican
some other file. And the most natural way of achieving the rddsi
conceptual independence is to use Prolog’s module system.

Modules essentially allow you to hide predicate definition®u are
allowed to decide which predicates should be public (thatciallable
from parts of the program that are stored in other files) andchvh
predicates should be private (that is, callable only fromthimi the
module itself). Thus you will not be able to call private piedes
from outside the module in which they are defined, but theré be
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no conflicts if two modules internally define the same pregicdn our
example, displayList/1 is a good candidate for becoming a private
predicate; it plays a simple auxiliary role in bogrintActors/1 and
printMovies/1, and the details of the role it plays for one predicate
are not relevant to the other.

You can turn a file into a module by putting a module declarati
the top. Module declarations are of the form

:— module (ModuleName,
List_of_Predicates_to_be_Exported).

Such declarations specify the name of the module and theofigiublic
predicates, that is, the list of predicates that you want Xpog. These
will be the only predicates that are accessible from outsite module.

Let's modularise our movie database programs. We only need t
include the following line at the top of the first file:

% This is the file: printActors.pl
:- module(printActors, [printActors/1]).

printActors(Film) : -
setof (Actor,starring(Actor,Film) ,List),
displayList(List).

displayList([]):- nl.

displayList ([X|L]):-
write(X), tab(1),
displayList(L).

Here we have introduced a module callpdlintActors, with one public
predicateprintActors/1. The predicateiisplayList/1 is only known
in the scope of the modulerintActors, so its definition won't affect
any other modules.

Likewise we can turn the second file into a module:

% This is the file: printMovies.pl
:- module(printMovies, [printMovies/1]).
printMovies(Director):-

setof (Film,directed(Director,Film) ,List),
displayList(List).
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displayList([]):- nl.

displayList ([XIL]):-
write(X), nl,
displayList (L) .

Again, the definition of thedisplayList/1 is only known in the scope
of the moduleprintMovies, so there won’t be any clash when loading
both modules at the same time.

Modules can be loaded with the built-in predicatese_module/1.
This will import all predicates that were defined as publicthg module.
In other words, all public predicates will be accessible. d@ this we
need to change the main file as follows:

% This is the file: main.pl

:- use_module(printActors).
:- use_module(printMovies) .

If you don’t want to use all public predicates of a module, loumly
some of them, you can use the two-place versioru®d_module, which
takes a list of predicates that you actually want to importitassecond
argument. So, by putting

% This is the file: main.pl

:- use_module(printActors, [printActors/1]).
:— use_module(printMovies, [printMovies/1]).

at the top of the main file, we have explicitly stated that wen aese
printActors/1 and printMovies/1, and nothing else (in this case,
of course, the declaration is unnecessary as there are rer pthblic
predicates that we could use). Needless to say, you can omport
predicates that are actually exported by the relevant neodul

Libraries

Many of the most common predicates are provided predefinedonie
way or another, by most Prolog implementations. If you hagerbusing
SWI Prolog, for example, you will probably have noticed tipmedicates
like append/3 and member/2 come as part of the system. That's a
speciality of SWI, however. Other Prolog implementatiolise SICStus
for example, don’t have them built-in, but provide them astpaf a
library.
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Libraries are modules defining common predicates, and calodmed
using the normal commands for importing modules. When $yiagi
the name of the library that you want to use, you have to tedlider
that this module is a library, so that Prolog knows where tokldor
it (namely, in the place where Prolog keeps its librariest o the
directory where your other code is). For example, putting tlirective

:— use_module(library(lists)).

at the top of your file tells Prolog to load a library calledists.
In SICStus Prolog, this library contains a set of commonlhedudist
processing predicates.

Libraries can be very useful and they can save you a lot of work
Moreover, the code in libraries has typically been writtey dxcellent
programmers, and is likely to be highly efficient and problizee.
However the way that libraries are organised and the inventf
predicates provided by libraries are by no means standatdacross
different Prolog implementations. This means that if yountvgour
program to run with different Prolog implementations, it [wobably
easier and faster to define your own library modules (usimgtétthniques
that we saw in the last section) rather than to try to work adou
the incompatibilities between the library systems of défg Prolog
implementations.

2 Writing to Files

Many applications require that output be written to a fileheatthan to
the screen. In this section we will explain how to do this irolBg.

In order to write to a file we have to create one (or open an iagist
one) and associate a stream with it. You can think of streams a
connections to files. In Prolog, streams are blessed withesain a
rather user-unfriendly format, such as\$stream’(183368). Luckily,
you never have to bother about the exact names of streams heugh
Prolog assigns these names internally, you can use Prologfication
to match the name to a variable and make use of the variabkerrat
than the name of the stream itself.

Say you want to print the string 'Hogwarts’ to the filmgwarts. txt.
This is done as follows:

open(’hogwarts.txt’,write,Stream),
write(Stream, ’Hogwarts’), nl(Stream),
close(Stream),
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What's happening here? Well, first the built-in predicatgen/3 is
used to create the filkogwarts.txt. The second argument afpen/3
indicates that we want to open a new file (overwriting any texgs file
with the same name). The third argument @fen/3 returns the name
of the stream. Secondly, we write 'Hogwarts’ on the streand #&sue
a newline command as well. After this we are ready, and cldee t
stream, using the built-irclose/1.

And that's more or less all there is to it. As promised, we waod
interested in the name of the stream — we used the variablean
to pass it around. Also note that therite/2 predicate we used here
is basically a more general form of therite/1 predicates we used in
Chapter 9 for writing to the screen.

What if you don’'t want to overwrite an existing file but appetodan
existing one? This is done by choosing a different mode whgenimg
the file: instead ofwrite, use append as value for the second argument
of open/3. If a file of the given name doesn’t exist, it will be created.

3 Reading from Files

In this section we show how to read from files. Reading infdroma
from files is straightforward in Prolog — or at least, it is ihig
information is given in the form of Prolog terms followed bullf stops.
Consider the filehouses.txt:

gryffindor.
hufflepuff.
ravenclaw.
slytherin.

Here is a Prolog program that opens this file, reads the irdtam from
it, and displays it on the screen:

main:-
open(’houses.txt’,read,Str),
read(Str,Housel),
read (Str,House?2),
read(Str,House3),
read(Str,House4),
close(Str),
write([Housel,House2,House3,House4]), nl.

This opens a file in reading mode, then reads four Prolog tersitgy the
built-in predicateread/2, closes the stream, and prints the information
as a list.
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All very straightforward. Nonetheless, thesad/2 predicate needs to
be handled with care. First of all, it only is able to handleolBg
terms (we’ll say more about this problem shortly). And setipnit will
cause a run-time error if we use it to read from a stream wheneth
is nothing to read. Is there an elegant way to overcome thi®nsk
problem?

There is. The built-in predicatet_end_of_stream/1 checks whether
the end of a stream has been reached, and can be used as ansafety
For a streamX, at_end_of_stream(X) will evaluate to true when the
end of the streanX is reached (in other words, when all terms in the
corresponding file have been read).

The following code is a modified version of our earlier readin
program, which shows howt_end_of_stream/1 can be incorporated:

main:-
open(’houses.txt’,read,Str),
read_houses(Str,Houses),
close(Str),
write(Houses), nl.

read_houses(Stream, []):-
at_end_of_stream(Stream) .

read_houses(Stream, [X|L]) :-
\+ at_end_of_stream(Stream),
read(Stream,X),
read_houses(Stream,L).

Now for the nastier problem. Recall thatad/2 only reads in Prolog
terms. If you want to read in arbitrary input, things beconaher
unpleasant, as Prolog forces you to read information on #wel|of
characters. The predicate that you need in this casgeis code/2
which reads the next available character from a stream. &clteas are
represented in Prolog by their integer codes. For exangde, code/2
will return 97 if the next character on the stream is an

Usually we are not interested in these integer codes, buthm t
characters — or rather, in the atoms that are made up of listhease
characters. How do we get our hands on these (lists of) ctess& One
way is to use the built-in predicatetom_codes/2 that we introduced
in Chapter 9 to convert a list of integers into the correspagpdatom.
We'll use this technique in the following example, a preticéhat reads
in a word from a stream.
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readWord (InStream,W) : -
get_code (InStream,Char),
checkCharAndReadRest (Char,Chars,InStream),
atom_codes (W,Chars) .

checkCharAndReadRest (10, [1,_):- !
checkCharAndReadRest (32, []1,_):- !
checkCharAndReadRest (-1, [],_):- !
checkCharAndReadRest (end_of _file,[],_):- !

checkCharAndReadRest (Char, [Char|Chars],InStream) : -
get_code (InStream,NextChar),
checkCharAndReadRest (NextChar,Chars,InStream) .

How does this work? It reads in a character and then checkshehe
this character is a blank (integer code 32), a new line (10Yher end
of the stream {1). In any of these cases a complete word has been
read, otherwise the next character is read.

4 Exercises

Exercise 12.1. Write code that createiogwart.houses, a file that
that looks like this:

gryffindor
hufflepuff ravenclaw
slytherin

You can use the built-in predicatesen/3, close/1, tab/2, nl/1, and
write/2.

Exercise 12.2. Write a Prolog program that reads in a plain text
file word by word, and asserts all read words and their frequento
the Prolog database. You may use the predicatedWord/2 to read in
words. Use a dynamic predicateord/2 to store the words, where the
first argument is a word, and the second argument is the freguef
that word.



Chapter 12: Working With Files 227

5 Practical Session

In this practical session, we want to combine what we havenésh
about file handling with some topics we met in earlier chaptefhe
goal is to write a program for running a DCG grammar on a téstsu
so that the performance of the grammar can be checked.

What is a testsuite? It is a file that contains lots of possihfguts
(and expected outputs) for some program. In this case, auttsst
will be a file that has lists representing grammatical andramgnatical
sentences, such afthe,woman,shoots,the,cow,under,the,shower]
or [him,shoots,woman]. The test program should take this file, run
the grammar on each of the sentences, and store the resuésoiher
file. We can then look at the output file to check whether the
grammar answered everywhere the way it should have. Wheelajsug
grammars, testsuites like this are extremely useful for intplsure that
any modifications we make to the grammar don’t have unwantitts.

Step 1

Take the DCG that you built in the practical session of Chagteand

turn it into a module, exporting the predicatg 3, that is, the predicate
that lets you parse sentences and returns the parse trees a#rsit

argument.

Step 2

In the practical session of Chapter 9, you had to write a pwogfor
pretty printing parse trees onto the screen. Turn that intmcdule as
well.

Step 3

Now modify the program so that it prints the tree not to theesar but
to a given stream. That means that the prediggieree should now
be a two-place predicate taking the Prolog representatioa parse tree
and a stream as arguments.

Step 4

Import both modules into a file and define a two-place predicaist
which takes a list representing a sentence (suchHaasroman,shoots]),
parses it, and writes the result to the file specified by theors#c
argument oftest. Check that everything is working as it should.

Step 5

Finally, modify test/2, so that it takes a filename instead of a sentence
as its first argument, reads in the sentences given in the ffiéeby one,



228 Learn Prolog Now!

parses them, and writes the sentence as well as the parsnf meto
the output file. For example, if your input file looked like ghi

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].
the output file should look something like this:

[the, cow, under, the, table, shoots]

s(
np(
det (the)
nbar (
n(cow))

pp(
prep(under)

np(
det (the)
nbar (
n(table)))))
vp (
v(shoots)))

[a, dead, woman, likes, hel

no

Step 6

Now (if you are in for some real Prolog hacking) try to write adule
that reads in sentences terminated by a full stop or a linakbfeom a
file, so that you can give your testsuite as

the cow under the table shoots .

a dead woman likes he .
instead of

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].
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Step 7

Make the testsuite environment more sophisticated, bynadififormation

to the input file about the expected output (in this case, kdrethe
sentences has a parse or not). Then modify the program soitthat
checks whether the expected output matches the obtaingaitout






Answers to the Exercises

Yes, yes, you're right. Waldid put in the answers to all the exercises.
Reluctantly and against our better judgement. Foolishlywibg to
immense pressure. And now you've gone and found them...

But just because we've done something dumb, it doesn’t mean y
have to too. Once you have seen the answer to an exercisd| ko=@
forever the chance of working it out yourself. But you'vellsgot time
to put things right. So don’t turn this page! Go back and traiab
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Didn’t you hear what we just said?
This really is your very last chance!
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Answer 1.1

1. vINCENT is an atom: it starts with a lower-case letter.

2. Footmassage iS a variable: it starts with an upper-case letter.

3. variable23 is an atom: it starts with a lower-case letter.

4. Variable2000 is a variable: it starts with an uppercase letter.

5. big kahuna burger iS an atom: it starts with a lower-case letter.

6. ’big kahuna burger’ is an atom: it is between two single quotes.

7. big kahuna burger iS neither: variables can never contain spaces,
and atoms cannot either — unless the atom starts and endsawith
single quote.

8. ’Jules’ is an atom: it is enclosed between single quotes.
9. _Jules is a variable: it starts with an underscore.

10. ’_Jules’ is an atom: it is enclosed between single quotes.

Answer 1.2

1. loves(Vincent,mia) is a complex term. Its functor iSoves
and its arity is 2.

2. ’loves(Vincent,mia)’ iS an atom: it is enclosed between single
quotes.

3. Butch(boxer) is not a term. It starts with an upper-case letter
and therefore cannot be an atom or a complex term. It cannot
be a variable either because variables are not supposedntairco
parentheses.

4. boxer (Butch) is a complex term. Its functor i®oxer and its
arity is 1.

5. and(big(burger) ,kahuna(burger)) iS a complex term. Its
functor is and and its arity is 2. The arguments are again complex
terms.

6. and(big(X) ,kahuna(X)) is a complex term. Its functor imnd
and its arity 2.
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7. _and(big(X) ,kahuna(X)) is not a term. It starts with an
underscore and can therefore not be an atom or a complex term.
It cannot be a variable either because variables are notosedp
to contain parentheses or commas.

8. (Butch kills Vincent) is not a term. It contains parentheses
and empty spaces and therefore can neither be an atom nor a
variable. It doesn’t have the right format for a complex term
either; in particular, it has no functor.

9. kills(Butch Vincent) is not a term. However, adding a comma
between Butch and Vincent would make it into a complex term.

10. kills(Butch,Vincent is not a term. However, adding a closing
parenthesis at the end would make it into a complex term.

Answer 1.3

There are three facts and four rules in this knowledge babés means
that there are seven clauses. The heads of the rulespargon(X),
loves(X,Y), and father(Y,Z) (everything on the left-hand side of
the rules), the goals ar@an(X), woman(X), father(X,Y), man(Y),
son(Z,Y), and daughter(Z,Y) (everything on the right hand side of
the rules). This knowledge base defines five predicates, lgam@an/1,
man/1, person/1, loves/2, and father/2.

Answer 1.4

Here is an example of what your answers could look like. Thafy,
course, don’t have to lookexactly like that. For example, the first fact
could also bekiller(’Butch’) or killer(b) or evenk(50), if you
decide to represent Butch by the numisr and the property of being
a killer by the predicatex/1.

1. killer (butch).

2. married(mia, marsellus).

3. dead(zed) .

4. kill (marsellus,X):- give(X,mia,Y), footmassage(Y).
5. love(mia,X):- good_dancer(X).

6. eat(jules,X) :- nutritious(X).

eat (jules,X):- tasty(X).
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Answer 1.5
1. ?- wizard(ron).
yes
2. ?- witch(ron).
no
or
ERROR: Undefined procedure: witch/1
3. ?- wizard(hermione).
no
4, ?- witch(hermione).
no
or
ERROR: Undefined procedure: witch/1
5. ?7- wizard(harry).
yes
6. ?7- wizard(Y).
Y = ron ;
Y = harry ;
no
7. ?- witch(Y).
no
or
ERROR: Undefined procedure: witch/1
Answer 2.1
1. bread = bread unifies.

2
3.
4

. ’Bread’ = bread doesn’t unify.

’bread’ bread unifies.

. Bread = bread unifies; the variableBread gets instantiated with

the atombread.



238

© 00 N o O

10.

11.

12.

13.

14.

. food(bread)

. food(bread)

Learn Prolog Now!

. bread = sausage doesn’t unify.

bread doesn't unify.

X unifies; X gets instantiated witlfood (bread).

. food(X) = food(bread) unifies; X gets instantiated witlbread.

. food(bread,X) = food(Y,sausage) unifies; X gets instantiated

with sausage and Y gets instantiated witlbread.

food(bread,X,beer) = food(Y,sausage,X) doesn’t unify; X
cannot be instantiated withausage as well asbeer.

food(bread,X,beer) = food(Y,kahuna burger) doesn’'t unify;
the functors are of different arity.

food(X) = X is trickier. According to the basic definition of
unification given in the text, these two terms do not unify, as
no matter what (finite) term we instantiate to, the two sides
won't be identical. However (as we mentioned in the text) erod
Prolog interpreters will detect that there is a problem hemd will
instantiateX with the ‘infinite term’ food (food(food(...))), and
report that unification succeeds. In short, there is no &uifr
answer to this question; it's essentially a matter of cotieen The
important point is to understand why such unifications nexdeé
handled with care.

meal (food(bread) ,drink(beer)) = meal(X,Y) unifies; X gets
instantiated withfood (bread) and Y with drink(beer).

meal (food (bread) ,X) = meal (X,drink(beer)) doesn’t unify; X
cannot get instantiated twice with different things.

Answer 2.2

1.

2.

7- magic(house_elf). no

7- wizard(harry) .
no

or
ERROR: undefined procedure wizard/1

7- magic(wizard).
no
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4, ?7- magic(’McGonagall’).
yes
5. 7- magic(Hermione) .

Hermione = dobby ;
Hermione = hermione ;

Hermione = ’McGonagall’ ;
Hermione = rita_skeeter ;
no

The search tree for the last query is:

?7- magic(Hermione)

/ I \
Hermione=_G65 Hermione=_G76 Hermione=_G87
/ I \
?- house_elf (_G65) | \

I I \
_G65=dobby 7- wizard(_G76) \

I I I
I | 7- witch(_G87)

success fail / | \
/ I \
_G87=hermione | \
I I \
| _G87=’McGonag’ \
I I \
I | _G87=r_skeeter
I I I
success success success
Answer 2.3
?- sentence(W1,W2,W3,W4,W5).
Wl = a,
W2 = criminal,
W3 = eats,
W4 = a,

W5 = criminal ;

Wl = a,
W2 = criminal,
W3 = eats,
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w4 =

W5

Wi
w2
W3

w4 =

W5

Wi
w2
W3

w4 =

W5

Wi
w2
W3

w4 =

W5

w1
w2
W3

w4 =

W5

Wi
W2
W3

w4 =

W5

w1
W2
W3

w4 =

W5

Wi
W2

a,
’big kahuna burger’ ;

a,
criminal,
eats,
every,
criminal ;

a,

criminal,

eats,

every,

’big kahuna burger’ ;

a,
criminal,
likes,

a,
criminal ;

a,

criminal,

likes,

a,

’big kahuna burger’ ;

a,
criminal,
likes,
every,
criminal ;

a,

criminal,

likes,

every,

’big kahuna burger’ ;

a,
’big kahuna burger’,
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W3 = eats,
W4 = a,
W5 = criminal ;

W1l = every,
W2 = ’big kahuna burger’,
W3 = likes,
W4 = every,
W5 = ’big kahuna burger’ ;
no

Answer 2.4

crossword(V1,V2,V3,H1,H2,H3) : -
word(V1,_,A,_,B,_,C, ),

word(V2,_,D,_,E,_,F,.),

word(V3,_,G,_,H,_,I,.),

word(H1,_,A,_,D,_,G,_),

word(H2,_,B,_,E,_,H,_),

word(H3,_,C,_,F,_,I,.).
Answer 3.1

No, it's not a good idea to reformulat@escend/2 in that way: it
will get in an infinite loop for certain queries. For examplié, one
queries 7- descend(rose,X), the first clause will fail, but the second
clause applies. But the second clause tries to find a soluon?-
descend(rose,Z), and so on.

Answer 3.2

directlyIn(irina,natasha).
directlyIn(natasha,olga).
directlyIn(olga,katarina).

in(X,Y) :- directlyIn(X,Y).
in(X,Y):- directlyIn(X,Z), in(Z,Y).

Answer 3.3

travelFromTo(X,Y) : -
directTrain(X,Y).
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travelFromTo (X,Y) : -
directTrain(X,Z),
travelFromTo(Z,Y)

Answer 3.4
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greater_than(succ(X),0).
greater_than(succ(X) ,succ(Y)) :- greater_than(X,Y).

Answer 3.5

swap (leaf (X) ,leaf (X)).
swap (tree(B1,B2) ,tree(B2Swapped,BlSwapped)) : -
swap(B1,B1Swapped) ,

swap (B2,B2Swapped) .
Answer 4.1
1. 7= [a,b,c,d] = [a: [b,C,d]].

No

(The first list has four elements; the second only two.)

2. 7- [a,b,c,d] =
Yes

3. ?- [a,b,c,d] =
No

4. ?- [a,b,c,d] =
Yes

5. ?- [a,b,c,d] =
No

6. ?- [a,b,c,d] =
Yes

7. ?- [a,b,c,d] =
No

8. ?- [a,b,c,d] =
Yes

9. - [ =_.

Yes

lal[b,c,d]].

[a,b, [c,d]].

[a,bl [c,d]].

[a,b,c,[d]].

[a,b,cl[d]].

[a,b,c,d,[]1].

[a,b,c,dl[]].
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10. 7- [0 = [_].
No

(The first list is empty; the second list has one element.)

11. - [0 =1([_1017.
No

(The first list is empty; the second list has one element.)

Answer 4.2
1. [11[2,3,4]1] is correct. The list has four elements.
2. [1,2,31[1] is correct. The list has three elements.

3. [112,3,4] is not correct. The tail, that is, what's right df, has
to be a list (as in the first example) but it's not.

4. [1]1[21[31[411]1] is correct. The list has four elements.
5. [1,2,3,41[1] is correct. The list has four elements.

6. [[11[1] is correct. The list has one element, namely the empty
list.

7. [[1,2]14] is not correct. The tail is not a list.
8. [[1,2],[3,4]11[5,6,71] is correct. The list has five elements.

Answer 4.3
second (X, [_,XI|_1).

Answer 4.4
swap12([H1,H2|T], [H2,H1|T]).

Answer 4.5

The base clause: the input list is empty. There is nothingramstate,
so the output list is empty as well.

listtran([],[]).

The recursive clause: we translate the h&aof the input list using
the predicatetran/2. The result iSE and becomes the head of the
output list. Then we recursively translate the rest of thpuin The
result becomes the rest of the output.

listtran([G|GT], [EIET]) :-
tran(G,E),
listtran(GT,ET).
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Answer 4.6

The base clause: the input list is empty. So there is nothingurite to
the output list. So that is empty as well.

twice([1,[1).

The recursive clause: the first two elements of the output die
both identical to the head of the input list. The recursivél samply
produces the tail of the output list from the tail of the inpist.

twice([H|TIn], [H,HITOutl):-
twice(TIn, TOut).

Answer 4.7

?7- member(a, [c,b,a,y]).
|

7- member (a, [b,a,y])
|

7- member (a, [a,y])
|

success

?7- member(x, [a,b,c]).
7- memberl(x, [b,c).
7- membelr(x, [c]).

7- membler(x, .

[
fail

?7- member (X, [a,b,c]).
/ \
X=a X=_G65
| |
success 7-member (_G65, [b,c]).
/ \
_G65=b ?- member (_G65, [c])
| |

success _G65=c

success
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Answer 5.1

1.

10.

11.

12.
13.
14.
15.

16.

Prolog answers:X = 3*4. Variable X is instantiated with the
complex term3x4.

. Prolog answersx = 12.

. Prolog answers: ERROR: Arguments are not sufficientlyamtsated.
. Prolog answersx = Y.

. Prolog answers: yes.

. Prolog answers: yes.

. Prolog answers: ERROR: Arguments are not sufficientlyamsated.
. Prolog answersx = 3.

. Prolog answers: no. Prolog evaluates the arithmetic essfon to

the right of is/2. Then it tries to unify the result with the term
to the left of is/2. This fails as the numbes does not unify the
complex term1+2.

Prolog answersx = 3.

Prolog answers: yes3+2 and +(3,2) are two ways of writing
the same term.

Prolog answers: yes.
Prolog answers: yes.
Prolog answers: yes.
Prolog answers: no.

Prolog answers: yes.

Answer 5.2

increment (X,Y) :-
Y is X + 1.

sum(X,Y,Z) : -
Z is X + Y.
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Answer 5.3
addone ([1,[1).

addone ([H|T], [H1|T1]) :-
H1 is H + 1,
addone(T,T1).
Answer 6.1
doubled (L) : -
append(L1,L1,L).
Answer 6.2
A solution usingrev/2:

palindrome (L) : -
rev(L,L).

A solution that is not using a reverse predicate:

palindrome (L) : -
check_palindrome (L, []).

check_palindrome(L,L).
check_palindrome([_|L],L).
check_palindrome([H|T],LPal):-

check_palindrome(T, [H|LPal]).

Answer 6.3

toptail ([H|TInList],Outlist):-
append (OutList, [_],TInList).

Answer 6.4
A solution usingreverse/2:

last(L,X):-
reverse(L, [X]|_1).

An alternative solution:
last ([X],X).

last([_IL],X):-
last(L,X).

Learn Prolog Now!
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Answer 6.5
A solution usingappend/3:

swapfl([H1|T1], [H2]|T2]):-
append (Middle, [H2],T1),
append(Middle, [H1],T2).

An alternative solution:

swapfl([First,Last], [Last,First]).

swapfl([First,Next|L1], [Last,Next|L2]):-
swapfl([First|L1], [Last|L2]).

Answer 6.6

In this solution the street is represented as list of threesbs. A house
is represented as a 3-place (colour, nationality, pet) ¢exngerm. With
the help ofmember/2 and sublist/2 we check the constraints of the
puzzle.

zebra(N) :-

Street = [Housel,House2,House3],

member (house(red,_,_),Street),

member (house (blue,_,_),Street),

member (house (green, _,_) ,Street),

member (house(red,english,_),Street),

member (house(_,spanish, jaguar) ,Street),
sublist([house(_,_,snail) ,house(_,japanese,_)],Street),
sublist ([house(blue,_,_) ,house(_,_,snail)],Street),
member (house(_,N,zebra) ,Street).

Answer 7.1
The internal representation of the DCG rules that Prolod wdrk with:

s(A,B) :- foo(A,C), bar(C,D), wiggle(D,B).
foo([choo|A],A).

foo(A,B) :- foo(A,C), foo(C,B).

bar(A,B) :- mar(A,C), zar(C,B).

mar (A,B) :- me(A,C), my(C,B).

me([ilA],A).

my ([am|A],A).

zar(A,B) :- blar(A,C), car(C,B),
blar([alA],A).
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car([train|A],A).
wiggle([toot|A],A).
wiggle(A,B) :- wiggle(A,C), wiggle(C,B).

The first three sentences that Prolog will generate:
1. choo i am a train toot
2. choo i am a train toot toot

3. choo i am a train toot toot toot

Answer 7.2

s -—> [a,b].

s ——> a, s, b.

a ——> [a].

b ——> [b].
Answer 7.3

s ——> [].

s -——> a, s, b.

a -——> [a].

b ——> [b,b].
Answer 8.1

s —=> np(Num) ,vp(Num) .
np (Num) --> det(Num) ,n(Num) .

vp(Num) --> v(Num) ,np(_).
vp(Num) --> v(Num).

det(_) --> [thel.
det(sg) --> [al.

n(sg) --> [woman] .
n(pl) --> [women].
n(sg) --> [man].
n(pl) --> [men].
n(sg) --> [apple].
n(pl) --> [apples].
n(sg) --> [pear].
n(pl) --> [pears].
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v(sg) --> [eats].
v(pl) --> [eat].

Answer 8.2
kanga(A,B,C,D,E): -
roo(A,B,D,

F),

jumps (C,C,F,G),
marsupial(A,B,C),

E=G.

Answer 9.1

1.

i e =
W N Rk O
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The query?-
The query?-
The query?-
The query?-
The query?-
The query?-
The query?-
The query?-
The query?-

. The query?-
. The query?-
. The query?-
. The query?-
14,

The query?-

Answer 9.2

1.
2.
3.

The query?-
The query?-

12 is 2#6. succeeds.
14 =\= 2x6. succeeds.
14 = 2x7. fails.
14 == 2x7. fails.
14 \== 2x7. succeeds.

14 =:= 2x7. succeeds.

[1,2,3]|[d,e]] == [1,2,3,d,e].

2+3 == 3+2. falils.

2+3 =:= 3+2. succeeds.
7-2 =\= 9-2. succeeds.

p == ’p’. succeeds.

p =\= ’p’. yields an error.

vincent == VAR. fails.

succeeds.

vincent=VAR, VAR==vincent. succeeds.

(a,.(,.(c,[1ON
(a,.(,.(c, [N

[a,b,c]. succeeds.

[a,bl [c]]. succeeds.

249

The query?- .(.(a,[1),.(.(b,[1),.(. (c,[1),[1)))=X. suc-
ceeds and and X = [[a],[b],[c]].

(a,.(b,.(.(c,[1),00))) = [a,bl[c]]. fails.

. The query?-
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Answer 9.3

termtype (Term,variable) : -
var (Term) .

termtype (Term,atom) : -
atom(Term) .

termtype (Term,number) : -
number (Term) .

termtype (Term, constant) : -
atomic(Term) .

termtype (Term,simple_term) : -
atomic(Term).

termtype (Term,simple_term) : -
var (Term) .

termtype (Term, complex_term) : -
nonvar (Term),
functor(Term, _,Arity),
Arity > O.

termtype (Term, term) : -
termtype (Term,simple_term) .

termtype (Term,term) : -

termtype (Term, complex_term) .

Answer 9.4

First, a solution that doesn’t use univ:

groundterm(Term) : -
atomic(Term) .

groundterm(Term) : -
nonvar (Term) ,
functor(Term, _,Arity),
groundterms (Term,Arity) .

groundterms(_,0) .
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groundterms (ComplexTerm,Arg) : -
Arg > 0,
arg(Arg,ComplexTerm,Term) ,
groundterm(Term) ,
NextArg is Arg - 1,
groundterms (ComplexTerm,NextArg) .

And here is a solution that does use univ:

groundterm(Term) :-
atomic(Term) .

groundterm(Term) :-
nonvar (Term) ,
Term =.. [_|Args],
groundterms (Args) .

groundterms ([]) .

groundterms ([H|T]) :-
groundterm(H),
groundterms (T) .

Answer 9.5
Given these operator definitions,

1. X is_a witch corresponds to the Prolog terts_a(X,witch);

2. harry and ron and hermione are friends corresponds to the
Prolog termare(and(harry,and(ron,hermione)),friends)

3. harry is_a wizard and likes quidditch is not a Prolog term;

4. dumbledore is_a famous wizard corresponds to the Prolog term
isa_a(dumbledore,famous (wizard))

Answer 10.1
7- p(X).
X=1;
X=2;
No
7- p(X), p(Y).
X=1

Y=1;
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X=1
Y=2;
X=2
Y=1;
X=2
Y=2;
No
7- p(X), !, p(N).
X=1
Y=1;
X=1
Y=2;
No
Answer 10.2

The original program tells whether a number is positive, ozeor

negative. It does that using three clauses. But if one of lineet clauses
succeeds in solving a goal, the others do not apply. Hence ameadd
green cuts:

class (Number,positive) :- Number > 0, !.
class(0,zero) :- !
class (Number,negative) :— Number < 0, !.

Answer 10.3
A version of split/3 without using the cut:

split([1, 1, D).

split ([Number|L], [X|Pos] ,Neg) :-
Number >= O,
split(L,Pos,Neg).

split ([Number|L],Pos, [X|Negl):-
Number < O,
split(L,Pos,Neg).

A version of split/3 using the cut:

split([1,[1,01):-!.
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split ([Number|L], [X|Pos],Neg) :-
Number > 0, !,
split(L,Pos,Neg) .

split ([Number|L], [X|Pos],Neg) :-
Number = 0, !,
split(L,Pos,Neg).

split ([Number|L],Pos, [X|Negl) :-
Number < O, !,
split(L,Pos,Neg).

Answer 10.4

directTrain(saarbruecken,dudweiler) .
directTrain(forbach,saarbruecken).
directTrain(freyming,forbach).
directTrain(stAvold,freyming) .
directTrain(fahlquemont,stAvold) .
directTrain(metz,fahlquemont) .
directTrain(nancy,metz) .

trainConnection(A,B) :- directTrain(A,B).
trainConnection(A,B) :- directTrain(B,A).

route(A,B,Route) : -
route (B, A, [B] ,Route).

route(A,B,Route, [BIRoute]) : -
trainConnection(A,B),
\+ member (B,Route).

route(A,C,SoFar,Route) : -
trainConnection(A,B),
\+ member (B,SoFar),
route(B,C, [B|SoFar] ,Route) .

Answer 11.1
After the first query the database contains:

q(foo,blug).
q(a,b).
q(1,2).
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After the second command the database contains:

q(foo,blug) .
q(a,b).
p(X):- h(X).

After the third command the database contains:

pX):- h(X).
Answer 11.2

1. List = [blug,blag,blig] ;
No

2. List = [blob,dang] ;
No

3. List = [blob,blob,blob,blaf,dang,dang,flab] ;
No

4. List = [blob] ;
Y = blag
List = [blob,blaf] ;
Y = dong
List = [dang] ;
Y = blug
List = [blob,dang] ;
Y = blob
List = [flab] ;
No

5. List = [blaf,blob,dang,flab] ;
No

Answer 11.3

:- dynamic sigmares/2.
sigmares(0,0).

sigma(Number, Sum) : -
sigmares (Number,Sum) .

sigma(Number,Total) : -



Answers to the Exercises 255

Number > O,

\+ sigmares (Number,Total),
NewNumber is Number - 1,
sigma(NewNumber,SubTotal),
Total is SubTotal + Number,
assert(sigmares(Number,Total)).

Answer 12.1

piece_of_code:-
open(’hogwart.houses’ ,write,Stream),
tab(Stream,6),
write(Stream,gryffindor),
nl(Stream),
write(Stream,hufflepuf),
tab(Stream,6),
write(Stream,ravenclaw),
nl(Stream),
tab(Stream,6),
write(Stream,slytherin),
nl(Stream),
close(Stream) .

Answer 12.2

:— dynamic word/2.

readWord(Stream,W,Status) : -
get_code(Stream,Char),
checkCharAndReadRest (Char,Chars,Stream,Status),
atom_codes (W,Chars) .

checkCharAndReadRest (10, []1,_,0k) :— !
checkCharAndReadRest (32, [],_,ok):— !
checkCharAndReadRest (-1, [],_,eof):- !
checkCharAndReadRest (end_of_file,[],_,eof):- !
checkCharAndReadRest (Char, [Char|Chars],Stream,Status) : -
get_code(Stream,NextChar),
checkCharAndReadRest (NextChar,Chars,Stream,Status) .

read_text(File) :-
open(File,read,Stream),
read_words (Stream,ok) ,
close(Stream) .
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read_words(_,eof).

read_words (Stream,PrevStatus) : -
\+ PrevStatus = eof,
readWord (Stream,Word,Status),
addWord (Word) ,
read_words (Stream,Status) .

addWord (Word) : -
word (Word,Freq), !,
retract( word(Word,Freq) ),
NewFreq is Freq + 1,
assert( word(Word,NewFreq) ).

addWord (Word) : -
assert( word(Word,1) ).



Further Reading

While we think Learn Prolog Now!is a good first book on Prolog,
it certainly shouldn’t be the last one you look at. To help ytake
the next step, we have listed, with comments, some of ourufieo
Prolog textbooks, and Prolog-based books on Artificial lligience (Al)
and Natural Language Processing (NLP).

Prolog textbooks

e Bratko (1990): Prolog Programming for Artificial Intelligence
Addison-Wesley. We strongly recommend this book. If youedik
Learn Prolog Now! we think you’'ll find this a natural followup.
Its strong point is the wide variety of programming stylesdan
applications it considers. This is a big book, and it will géaigou
quite a while to work through it. But if you do so, you'll sooreb
writing very substantial Prolog programs indeed, and ydeérn a
lot about Al along the way.

e Clocksin (2003): Clause and Effect: Prolog Programming for the
Working Programmer Springer. Strongly recommended. If you
want a concise practically oriented follow up tbearn Prolog
Now! that will really hone your Prolog skills, you can’'t do better
than this. It explains some interesting theory, but its re@éngth
is that it is based around a collection of worksheets. Sohe t
problems they contain, and you'll soon be flying.

e Clocksin and Mellish (1987):Programming in Prolog Springer.
This was one of the earliest, if not the earliest, textbookRvolog
programming. It won't take you far beyontearn Prolog Now])
but it is clearly written, and its discussions of DCGs, andtloé
link between logic and Prolog, are accessible and worthifaplat.

e O'Keefe (1990): Craft of Prolog MIT Press. This is the book
you should read when you're convinced that you know all about
Prolog and have nothing left to learn. Unless you truly are a
Prolog guru, you will swiftly learn that there are far deepevels
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of Prolog expertise than you suspected, and that you stile ha
great deal to master. Superb.

Sterling (1994): The Art of Prolog MIT Press. In Learn
Prolog Now! we don’t say much about the abstract idea of logic
programming. If the little we have said has wakened yourré@di
this is the book to go for next. Clearly written, it will giveowu

a good grounding in the basic theory of logic programmingd an
link it to the practical world of Prolog.

Applying Prolog in Al and NLP

Blackburn and Bos (2005): Representation and Inference for
Natural Language. A First Course in Computational Semantic
CSLI Lecture Notes. Introduces natural language semaritms

a computational perspective using Prolog as the implertienta
language. Learn Prolog Now! was originally intended to be an
appendix to this book.

Covington (1994): Natural Language Processing for Prolog
Programmers Prentice-Hall. Solid, well-written book on NLP that
uses Prolog as the implementation language. If you haveorted
any NLP before, and want to put your Prolog to work, this is a
good place to start.

Pereira and Shieber (1987Prolog and Natural Language Analysis
CSLI Lecture Notes. A classic. Several generations of PhD
students have cut their teeth on this one. Required reading.

Reiter (2001): Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical SystemdT Press. This
book examines, extends, and implements the Situation @alcu
a well known Al formalism for representing and reasoning wtho
changing information. It's an important book, and may not be
completely accessible if you don’'t have some theoreticakfeound.
But as an example of how Prolog can be put to work, it takes
some beating.

Shoham (1994): Artificial Intelligence Techniques in Prolog
Morgan Kaufman. Discusses and implements a wide range of
Al problem-solving techniques and concepts, including thdjpst
search, breadth-first search, best-first search, alplza-tméimax,
forward chaining, production systems, reasoning with uagaty,
and STRIPS.



Prolog Environments

Several Prolog environments are available, and probaldybibst idea
is simply to google what's available. But we list here four tbe more
widely used systems.

e SWI-Prolog
A Free Software Prolog environment, licensed under the dress
GNU public license. This popular interpreter was developgdlan
Wielemaker.
http://www.swi-prolog.org/

e SICStus Prolog
Industrial strength Prolog environment from the Swedisktitate
of Computer Science.
http://www.sics.se/sicstus/

e YAP Prolog
A Prolog compiler developed at the Universidade do Porto and
Universidade Federa do Rio de Janeiro. Free for use in adadem
environments.
http://www.ncc.up.pt/~vsc/Yap/

e Ciao Prolog
Another Prolog environment available under the GNU pubterise,
developed at the Universidad Politécnica de Madrid.
http://clip.dia.fi.upm.es/Software/Ciao/
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Symbols
,/2, 6
./2, 164

3 /2, 7
</2, 97
=../2, 172
=/2, 24
=:=/2, 97
=</2, 97
==/2, 160
=\=/2, 97
>/2, 97
>=/2, 97
\=/2, 42
\==/2, 161

A

append/3, 106

arg/3, 172

assert/1, 204
asserta/1, 207
assertz/1, 207
at_end_of_stream/1, 225
atom/1, 167
atom_codes/2, 173, 225
atomic/1, 167

B
bagof/3, 211

C
’Cc’/3, 130, 136
close/1, 223

Predicate Index

D
display/1, 179

E

ensure_loaded/1, 219

=
findall/3, 209
float/1, 167

functor/3, 170

G
get_code/2, 225

I
integer/1, 167
is/2, 90

L
listing/0, 17

M

max/3, 192
member/2, 76
module/2, 221

N

nl/0, 182, 220
nl/1, 223
nonvar/1, 167
notrace/0, 45
number/1, 167

number_codes/2, 174
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(@]
op/3, 176
open/3, 223, 224

R

read/2, 224
retract/1, 204
retractall/3, 208

S
setof/3, 213

T
tab/1, 182, 220
trace/0, 43

U

unify with occurs_check/2, 31
use_module/1, 222
use_module/2, 222

V
var/1, 167

W
write/1, 180
write/2, 223
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