难度:中等
现有一份 n + m
次投掷单个 六面 骰子的观测数据,骰子的每个面从 1
到 6
编号。观测数据中缺失了 n
份,你手上只拿到剩余 m
次投掷的数据。幸好你有之前计算过的这 n + m
次投掷数据的 平均值 。
给你一个长度为 m
的整数数组 rolls
,其中 rolls[i]
是第 i
次观测的值。同时给你两个整数 mean
和 n
。
返回一个长度为 n
的数组,包含所有缺失的观测数据,且满足这 n + m
次投掷的 平均值 是 mean
。如果存在多组符合要求的答案,只需要返回其中任意一组即可。如果不存在答案,返回一个空数组。
k
个数字的 平均值 为这些数字求和后再除以 k
。
注意 mean
是一个整数,所以 n + m
次投掷的总和需要被 n + m
整除。
输入:rolls = [3,2,4,3], mean = 4, n = 2
输出:[6,6]
解释:所有 n + m 次投掷的平均值是 (3 + 2 + 4 + 3 + 6 + 6) / 6 = 4 。
输入:rolls = [1,5,6], mean = 3, n = 4
输出:[2,3,2,2]
解释:所有 n + m 次投掷的平均值是 (1 + 5 + 6 + 2 + 3 + 2 + 2) / 7 = 3 。
输入:rolls = [1,2,3,4], mean = 6, n = 4
输出:[]
解释:无论丢失的 4 次数据是什么,平均值都不可能是 6 。
输入:rolls = [1], mean = 3, n = 1
输出:[5]
解释:所有 n + m 次投掷的平均值是 (1 + 5) / 2 = 3 。
/**
* 模拟
* @desc 时间复杂度 O(M + N) 空间复杂度 O(1)
* @param rolls
* @param mean
* @param n
*/
export function missingRolls(rolls: number[], mean: number, n: number): number[] {
const m = rolls.length
let sum = (m + n) * mean - rolls.reduce((a, c) => a + c, 0)
if (sum > n * 6 || sum < n) return []
const result = new Array(n).fill(1)
sum -= n
for (let i = 0; i < n; i++) {
if (sum > 5) {
result[i] += 5
sum -= 5
}
else {
result[i] += sum
break
}
}
return result
}