-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
182 lines (130 loc) · 5.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from keras import backend as K
from keras import layers
from keras.preprocessing.image import load_img, img_to_array
from keras.applications import vgg16
from keras import initializers
import numpy as np
def process_image(image_path, width, height, resize=True):
if resize:
img = load_img(image_path, target_size=(height, width))
else:
img = load_img(image_path)
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = vgg16.preprocess_input(img)
return img
def deprocess_image(x, width, height):
if K.image_data_format() == 'channels_first':
x = x.reshape((3, height, width))
x = x.transpose((1, 2, 0))
else:
x = x.reshape((height, width, 3))
# Remove zero-center by mean pixel
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
# 'BGR'->'RGB'
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
def expand_input(batch_size, input_o):
expanded_input = input_o.copy()
for x in range(batch_size - 1):
expanded_input = np.append(expanded_input, input_o, axis=0)
return expanded_input
def get_padding(image, axis_expanded=True):
height = image.shape[1]
width = image.shape[2]
pad_height = (height//8 + 1) * 8 - height
pad_width = (width//8 + 1) * 8 - width
if axis_expanded:
padding = (0, 0), (0, pad_height), (0, pad_width), (0, 0)
else:
padding = ((0, pad_height), (0, pad_width), (0, 0))
new_image = np.pad(image, padding, 'reflect')
return new_image
def remove_padding(image, ori_height, ori_width):
new_image = image[0:ori_height, 0:ori_width, :]
return new_image
def get_vgg_activation(layer_name, width, height):
tensor = K.placeholder((1, height, width, 3))
model = vgg16.VGG16(input_tensor=tensor, weights='imagenet', include_top=False)
outputs_dict = {}
for layer in model.layers:
outputs_dict[layer.name] = layer.output
layer.trainable = False
return K.function([tensor], [outputs_dict[layer_name]])
def get_content_loss(args):
new_activation, content_activation = args[0], args[1]
shape = K.cast(K.shape(content_activation), dtype='float32')
return K.sum(K.square(new_activation - content_activation)) / (shape[1] * shape[2] * shape[3])
def gram_matrix(activation):
assert K.ndim(activation) == 3
shape = K.cast(K.shape(activation), dtype='float32')
shape = (shape[0] * shape[1], shape[2])
activation = K.reshape(activation, shape)
return K.dot(K.transpose(activation), activation) / (shape[0] * shape[1])
def get_style_loss(args, **kwargs):
batch_size = kwargs['batch_size']
new_activation, style_activation = args[0], args[1]
loss_sum = K.variable(0.0)
for i in range(batch_size):
ori_gram_matrix = gram_matrix(style_activation[i])
new_gram_matrix = gram_matrix(new_activation[i])
loss_sum = loss_sum + K.sum(K.square(ori_gram_matrix - new_gram_matrix))
return loss_sum
def get_tv_loss(args, **kwargs):
image = args[0]
width = kwargs['width']
height = kwargs['height']
x_diff = K.square(image[:, :height - 1, :, :] - image[:, 1:, :, :])
y_diff = K.square(image[:, :, :width - 1, :] - image[:, :, 1:, :])
x_diff = K.sum(x_diff) / height
y_diff = K.sum(y_diff) / width
return x_diff + y_diff
def residual_block(x, num):
shortcut = x
x = layers.Conv2D(128, (3, 3), strides=1, padding='same', name='resi_conv_%d_1' % num)(x)
x = layers.BatchNormalization(name='resi_normal_%d_1' % num)(x)
x = layers.Activation('relu', name='resi_relu_%d_1' % num)(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same', name='resi_conv_%d_2' % num)(x)
x = layers.BatchNormalization(name='resi_normal_%d_2' % num)(x)
m = layers.add([x, shortcut], name='resi_add_%d' % num)
return m
def dummy_loss(y_true, y_pred):
return y_pred
def zero_loss(y_true, y_pred):
return K.variable(np.zeros(1,))
class OutputScale(layers.Layer):
def __init__(self, **kwargs):
super(OutputScale, self).__init__(**kwargs)
def build(self, input_shape):
pass
def call(self, x, mask=None):
return x * 150
def compute_output_shape(self, input_shape):
return input_shape
class AverageAddTwo(layers.Layer):
def __init__(self, **kwargs):
super(AverageAddTwo, self).__init__(**kwargs)
def build(self, input_shape):
pass
def call(self, x, mask=None):
return x[0] / 2 + x[1] / 2
def compute_output_shape(self, input_shape):
return input_shape
class InputReflect(layers.Layer):
def __init__(self, width, height, **kwargs):
super(InputReflect, self).__init__(**kwargs)
self.width = width
self.height = height
def build(self, input_shape):
init = initializers.RandomUniform(minval=-50, maxval=50, seed=None)
self.kernel = self.add_weight(name='kernel', shape=(self.height, self.width, 3),
initializer=init, trainable=True)
super(InputReflect, self).build(input_shape)
def call(self, x, mask=None):
y = x * self.kernel
return y
def compute_output_shape(self, input_shape):
return input_shape