-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface_fifth.hpp
579 lines (552 loc) · 20.6 KB
/
interface_fifth.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#ifndef INTERFACE_F_HEADER
#define INTERFACE_F_HEADER
#endif
#include "prng_engine.hpp" // for use with ICs
#ifndef PI
#define PI 3.1415
#endif
#ifndef Cplx
#define Cplx Imag
#endif
using namespace std;
using namespace LATfield2;
void doSetBackground(const metadata sim)
{
if (strcmp(sim.bckopt, "sym") == 0 || strcmp(sim.bckopt, "symdyn") == 0)
Hconf = &Hconf_sym;
else if (strcmp(sim.bckopt, "rho") == 0)
Hconf = &Hconf_rho;
else if (strcmp(sim.bckopt, "mink") == 0)
Hconf = &Hconf_mink;
else // i.e. lcdm
Hconf = &Hconf_old;
}
void doUpdateBackgroundEnergy(cosmology &cosmo, const metadata sim, double a,
double achiB, double aqB)
{
// NB: only made for symmetron (deltaBeta=0)
if (sim.As_use_dynbck == 0)
{
double phib;
if (a <= cosmo.astar)
cosmo.Omega_sym = 0.;
else
{
double a3 = pow(a, 3);
phib = (cosmo.mu_as / sqrt(cosmo.lambda_as)) * sqrt(1 - pow(cosmo.astar, 3) / a3);
cosmo.Omega_sym = 0.5 * cosmo.Omega_m / a3 * pow(phib / cosmo.M_as, 2) + (-0.5 * pow(cosmo.mu_as * phib, 2) + 0.25 * cosmo.lambda_as * pow(phib, 4)) * 2998 * 2998 / 3;
}
}
else
{
double a3 = a * a * a;
double phifac = cosmo.mu_as / sqrt(cosmo.lambda_as);
cosmo.Omega_sym =
+0.5 * cosmo.Omega_m / a3 * pow(achiB * phifac / cosmo.M_as, 2) + (0.5 * pow(aqB * phifac / (a3 * sim.boxsize), 2) - 0.5 * pow(cosmo.mu_as * achiB * phifac, 2) + 0.25 * cosmo.lambda_as * pow(achiB * phifac, 4)) * 2998 * 2998 / 3;
}
}
double sign(double val)
{
if (val < 0)
return -1;
else
return 1;
}
void doAchiQSA(
double dtau, double a_As, double fourpiG,
metadata sim, double dx, double avgsource,
cosmology cosmo, Field<Real> &achi, Field<Real> &aq,
Field<Real> &nT_cdm, double achiB, int cycle, int ICopt, int bckgRho)
{
Site x(achi.lattice());
// Quasi-static approximation using Gauss-Seidel iterative solution of Poisson
double convcheck = 0.9; // pass if GStol = 1
double old, QSAsource, QSAsource2;
int count = 0;
double prefac = pow(a_As * cosmo.mu_as * sim.boxsize * dx, 2.0);
double aetanorm = 2. * fourpiG / (a_As * pow(sim.boxsize * a_As * cosmo.M_as * cosmo.mu_as, 2.0));
double dAcnf = 0.5 * pow(cosmo.mu_as, 2) / cosmo.lambda_as;
double ffac = 1. / sim.numpts;
double half = 1. / 2., cx;
double T = cosmo.Omega_m / pow(a_As, 3); // use if bckgRho
double GStol = sim.GStol;
if (a_As > cosmo.astar)
{
if (sim.QSA_guess_dyn == 0)
old = sqrt(1.0 - pow(cosmo.astar / a_As, 3.0));
else
old = achiB;
}
else
old = 1e-4; // done in ISIS
if (ICopt == 0) // homogeneous ICs
{
for (x.first(); x.test(); x.next())
{
achi(x) = old;
}
}
else if (ICopt == 1) // try to have domain wall across box
{
for (x.first(); x.test(); x.next())
{
cx = x.coord(2) * ffac;
if (cx < half)
achi(x) = -old;
else
{
achi(x) = old;
}
}
}
achi.updateHalo();
if (parallel.rank() == 0 and cycle % CYCLE_INFO_INTERVAL == 0)
cout << "Starting Gauss-Seidel sweeps" << endl;
while (convcheck > GStol)
{
convcheck = 0.;
count++;
for (x.first(); x.test(); x.next())
{
old = achi(x);
if (bckgRho < 1)
T = nT_cdm(x);
QSAsource = pow(old, 3.0) + (aetanorm * T - 1.0) * old + cosmo.kappa2_as * old * old;
QSAsource2 = 3. * old * old + (aetanorm * T / (1 + dAcnf * old * old) - 1.0) //
+ 2. * cosmo.kappa2_as * old;
achi(x) = old - (achi(x + 0) + achi(x + 1) + achi(x + 2) + achi(x - 0) + achi(x - 1) + achi(x - 2) //
- 6. * old - QSAsource * prefac) /
(-6. - prefac * QSAsource2);
if (fabs(achi(x) - old) > convcheck)
convcheck = fabs(achi(x) - old);
}
parallel.max(convcheck);
achi.updateHalo();
if (parallel.rank() == 0 and cycle % CYCLE_INFO_INTERVAL == 0 and count % 1000 == 0)
cout << "finished GS sweep " << count << endl
<< " error = " << convcheck << ", tol = " << sim.GStol << endl;
}
if (parallel.rank() == 0 and cycle % CYCLE_INFO_INTERVAL == 0)
cout << "finished GS sweeps\n";
// find velocity
if (sim.QSAq > 0)
{
for (x.first(); x.test(); x.next())
{
aq(x) = a_As * a_As * (achi(x) - aq(x)) / dtau;
}
}
if (sim.QSAmodulateAmp != 1)
{
for (x.first(); x.test(); x.next())
{
achi(x) *= sim.QSAmodulateAmp;
}
achi.updateHalo();
}
}
void doAchiICs(metadata sim, icsettings ic, cosmology cosmo,
Field<Real> &achi, Field<Real> &aq, Field<Cplx> &scalarFT,
PlanFFT<Cplx> &plan_achi,
double fourpiG, double avgsource, double a,
double &achiB, double &aqB, int numpts3d,
double dtau, double dx, int cycle,
Field<Real> &nT_cdm)
{
Site x(achi.lattice());
if (strcmp(sim.achifile, "no") != 0)
{
COUT << "Reading achi/aq from file " << sim.achifile << endl;
string filename = sim.achifile;
achi.loadHDF5(filename);
if (strcmp(sim.aqfile, "no") != 0)
{
filename = sim.aqfile;
aq.loadHDF5(filename);
}
double mx = 0, mn = 0;
for (x.first(); x.test(); x.next())
{
if (achi(x) > mx)
mx = achi(x);
if (achi(x) < mn)
mn = achi(x);
}
parallel.max<double>(mx);
parallel.min<double>(mn);
COUT << "achi max/min = " << mx << " / " << mn << endl;
}
else if (strcmp(sim.As_ICopt, "homogeneous") == 0)
{
COUT << "Initialising achi as random small perturbations." << endl;
for (x.first(); x.test(); x.next())
{
achi(x) = sim.ICamp;
aq(x) = sim.ICamp2;
}
}
// some of below has read achi first
else if (strcmp(sim.As_ICopt, "random") == 0)
{
COUT << "Initialising achi as random small perturbations." << endl;
// Set x-grid small real numbers
sitmo::prng_engine prng;
prng.seed(ic.seed * parallel.rank());
for (x.first(); x.test(); x.next())
{
achi(x) = (2.0 * ((double)prng()) / (double)sitmo::prng_engine::max() - 1.0) * sim.ICamp;
aq(x) = (2.0 * ((double)prng()) / (double)sitmo::prng_engine::max() - 1.0) * sim.ICamp2 * sim.boxsize; // multiply because dimensionfull
}
}
else if (strcmp(sim.As_ICopt, "relaxed") == 0)
{ // Homogeneous field relaxed around ptcl input
// solve field
COUT << "Starting field with relaxed ICs\n";
doAchiQSA(
dtau, a, fourpiG,
sim, dx, avgsource,
cosmo, achi, aq,
nT_cdm, achiB, cycle, 0, 0);
}
else if (strcmp(sim.As_ICopt, "relaxedWall") == 0)
{ // have initial domain wall across x-axis
// solve field
COUT << "Starting field with relaxed ICs and a wall\n";
doAchiQSA(
dtau, a, fourpiG,
sim, dx, avgsource,
cosmo, achi, aq,
nT_cdm, achiB, cycle, 1, 0);
}
else if (strcmp(sim.As_ICopt, "relaxedSnap") == 0)
{ // relax previously loaded snapshot
COUT << "Starting field with relaxing input from file\n";
// solve field
doAchiQSA(
dtau, a, fourpiG,
sim, dx, avgsource,
cosmo, achi, aq,
nT_cdm, achiB, cycle, 2, 0);
}
else // ICs from scale-invariant power spectrum
{
COUT << "Initialising achi from scale-invariant power spectrum" << endl;
// Set x-grid small real numbers
gsl_spline *pkspline = NULL; // transfer function?
int num = 10000; // increase dim>ngrid
double k[num], pk[num];
k[0] = 0.;
pk[0] = sim.ICamp;
for (int i = 1; i < num; i++)
{
k[i] = (double)((i + 1) * sim.numpts) * 2. * M_PI / (double)(num + 1);
pk[i] = sim.ICamp / sqrt(2.) / M_PI; // scale-invariant
}
pkspline = gsl_spline_alloc(gsl_interp_cspline, num);
gsl_spline_init(pkspline, k, pk, num);
generateRealization(scalarFT, 1,
pkspline, (unsigned int)ic.seed, ic.flags & ICFLAG_KSPHERE);
plan_achi.execute(FFT_BACKWARD); // leave velocity zero
}
achi.updateHalo();
aq.updateHalo();
if (sim.As_compute_dynbck > 0)
{
for (x.first(); x.test(); x.next())
{
achiB += achi(x);
aqB += aq(x);
}
parallel.sum<double>(achiB);
parallel.sum<double>(aqB);
achiB /= numpts3d;
aqB /= numpts3d;
}
}
void doAchiFieldUpdate(
double dtau, int &N_as, double a_As, double fourpiG,
metadata sim, double dx, double avgsource,
cosmology cosmo, Field<Real> &achi, Field<Real> &aq,
Field<Real> &scalar, Field<Real> &scalar2,
Field<Real> &scalar3, Field<Real> &scalar4,
Field<Real> &scalar5,
Field<Real> &nT_cdm,
int cycle, double achiB)
{
if (strcmp(sim.As_solver, "leapfrog") == 0)
doEvolveLF(dtau, N_as, a_As, fourpiG,
sim, dx, avgsource,
cosmo, &achi, &aq,
nT_cdm);
else if (strcmp(sim.As_solver, "euler") == 0)
doEvolveEC(dtau, N_as, a_As, fourpiG,
sim, dx, avgsource, cosmo, &achi, &aq, nT_cdm);
else if (strcmp(sim.As_solver, "QSA") == 0)
doAchiQSA(
dtau, a_As, fourpiG, sim, dx,
avgsource, cosmo, achi, aq, nT_cdm, achiB, cycle, 0, 0);
else if (strcmp(sim.As_solver, "RK4") == 0)
doEvolveRK4(
dtau, N_as, a_As, fourpiG, sim, dx, avgsource, cosmo,
&achi, &aq, nT_cdm, scalar, scalar2, scalar3, scalar4, scalar5);
}
void doFindBackgroundQuantities(
Field<Real> &source, Field<Real> &T0i, Field<Real> &Sij,
double dx, double boxsize, double a, const cosmology cosmo,
Field<Real> &achi, Field<Real> &aq,
const metadata sim, Field<Real> &nT_cdm,
double &avgsource, double &eospar, double &eosparT, double &Vav,
double &T00J, double &T00E, double &T00hom, double &T00As_hom,
double &achiav, double &achi2av, double &aqav, double &aq2av,
double &fracp, double &fracm, int cycle)
{
Site xField(achi.lattice());
double psif, phif, aphif, daphidt;
double gradientachi_squared, Dx_achi_Dx_achi, Dy_achi_Dy_achi, Dz_achi_Dz_achi;
double Dx_achi, Dy_achi, Dz_achi;
double termtt, termii, termti, pot, lag;
double phi0 = cosmo.mu_as / sqrt(cosmo.lambda_as);
double phi02 = 0.5 * phi0 / dx / a;
double boxsize2 = boxsize * boxsize;
double rhocnorm = pow(2998., 2) / (3. * boxsize2);
double a2 = a * a;
double aetanorm = cosmo.aetanorm / (a * a2);
double a3 = a * a2 * rhocnorm;
double a4 = a2 * a2 * rhocnorm;
double pressavgT = 0, pressavg = 0;
double a6 = a2 * a4;
double Acnf, Acnf4, src, temp;
T00hom = 0.;
T00As_hom = 0.;
T00J = cosmo.Omega_m;
T00E = 0;
Vav = 0;
achiav = 0;
achi2av = 0;
aqav = 0;
aq2av = 0;
fracp = 0;
fracm = 0;
for (xField.first(); xField.test(); xField.next())
{
Acnf = 1. + cosmo.dAcnf * pow(achi(xField), 2.);
Acnf4 = pow(Acnf, 4);
T00E += source(xField) * Acnf4;
//------------------------
//(D_i achi)^2
//------------------------
Dx_achi = phi02 * (achi(xField + 0) - achi(xField - 0));
Dy_achi = phi02 * (achi(xField + 1) - achi(xField - 1));
Dz_achi = phi02 * (achi(xField + 2) - achi(xField - 2));
Dx_achi_Dx_achi = Dx_achi * Dx_achi;
Dy_achi_Dy_achi = Dy_achi * Dy_achi;
Dz_achi_Dz_achi = Dz_achi * Dz_achi;
gradientachi_squared = Dx_achi_Dx_achi + Dy_achi_Dy_achi + Dz_achi_Dz_achi;
//------------------------
// Useful quantities
aphif = phi0 * achi(xField);
daphidt = phi0 * aq(xField) / a2 / a;
//------------------------
// STRESS TENSOR COMPONENTS
//------------------------
pot = boxsize2 * ((-cosmo.mu_as * cosmo.mu_as / 2.0 + (cosmo.kappa_as / 3.0 + cosmo.lambda_as / 4.0 * aphif) * aphif) * aphif * aphif);
lag = -0.5 * (-daphidt * daphidt + gradientachi_squared) - pot;
//
src = source(xField) * Acnf4 - (-0.5 * daphidt * daphidt - pot - 0.5 * gradientachi_squared) * a3;
// do misc
T00hom += src;
T00As_hom -= (-0.5 * daphidt * daphidt - pot - 0.5 * gradientachi_squared) * a3;
pressavgT += (+Sij(xField, 0, 0) + Sij(xField, 1, 1) + Sij(xField, 2, 2)) / 6.;
pressavg += (+Dx_achi_Dx_achi + Dy_achi_Dy_achi + Dz_achi_Dz_achi + 3. * lag) * a3 / 3.;
Vav += pot * rhocnorm;
achiav += achi(xField);
achi2av += achi(xField) * achi(xField);
aqav += aq(xField);
aq2av += aq(xField) * aq(xField);
temp = max(max(fabs(Dx_achi), fabs(Dy_achi)), fabs(Dz_achi));
if (achi(xField) > 0.01)
{
fracp += 1;
}
if (achi(xField) < -0.01)
fracm += 1;
if (strcmp(sim.As_solver, "QSA") == 0 && sim.QSAq > 0 && a > sim.aMG)
aq(xField) = achi(xField); // prepare
}
double numpts3d = pow((double)sim.numpts, 3.);
parallel.sum<double>(T00hom);
parallel.sum<double>(T00E);
parallel.sum<double>(T00As_hom);
parallel.sum<double>(pressavg);
parallel.sum<double>(pressavgT);
parallel.sum<double>(Vav);
parallel.sum<double>(achiav);
parallel.sum<double>(achi2av);
parallel.sum<double>(aqav);
parallel.sum<double>(aq2av);
parallel.sum<double>(fracp);
parallel.sum<double>(fracm);
T00As_hom /= numpts3d;
T00hom /= numpts3d;
T00E /= numpts3d;
Vav /= numpts3d;
achiav /= numpts3d;
achi2av /= numpts3d;
aqav /= numpts3d;
aq2av /= numpts3d;
pressavg /= numpts3d;
pressavgT /= numpts3d;
fracp /= numpts3d;
fracm /= numpts3d;
eospar = pressavg / T00As_hom;
eosparT = pressavgT / T00hom;
avgsource = (T00hom + cosmo.Omega_rad / a + cosmo.Omega_Lambda * pow(a, 3.0));
if (cycle % CYCLE_INFO_INTERVAL == 0)
{
COUT << " cycle " << cycle << ", background information: z = " << (1. / a) - 1. << ", average T00 = " << T00hom << ", background model = " << cosmo.Omega_cdm + cosmo.Omega_b + bg_ncdm(a, cosmo) << endl;
}
}
template <class FieldType>
void doConstructAchiSEtensor(
Field<FieldType> &source, Field<FieldType> &T0i, Field<FieldType> &Sij,
double dx, double boxsize, double a, const cosmology cosmo,
Field<FieldType> &achi, Field<FieldType> &aq,
const metadata sim, Field<Real> &nT_cdm, Field<Cplx> &scalarFT,
PlanFFT<Cplx> &plan_Tcdm_As,
double &avgsource, double &eospar, double &eosparT, double &Vav,
double &T00J, double &T00E, double &T00hom, double &T00As_hom,
double &achiav, double &achi2av, double &aqav, double &aq2av,
double &fracp, double &fracm, int cycle, double fourpiG)
{
Site xField(achi.lattice());
double psif, phif, aphif, daphidt;
double gradientachi_squared, Dx_achi_Dx_achi, Dy_achi_Dy_achi, Dz_achi_Dz_achi;
double Dx_achi, Dy_achi, Dz_achi;
double termtt, termii, termti, pot, lag;
double phi0 = cosmo.mu_as / sqrt(cosmo.lambda_as);
double phi02 = 0.5 * phi0 / dx / a;
double boxsize2 = boxsize * boxsize;
double rhocnorm = pow(2998., 2) / (3. * boxsize2);
double a2 = a * a;
double aetanorm = cosmo.aetanorm / (a * a2);
double a3 = a * a2 * rhocnorm;
double a4 = a2 * a2 * rhocnorm;
double pressavgT = 0, pressavg = 0;
double a6 = a2 * a4;
double Acnf, Acnf4, temp;
T00hom = 0.;
T00As_hom = 0.;
T00J = cosmo.Omega_m;
T00E = 0;
Vav = 0;
achiav = 0;
achi2av = 0;
aqav = 0;
aq2av = 0;
fracp = 0;
fracm = 0;
for (xField.first(); xField.test(); xField.next())
{
Acnf = 1. + cosmo.dAcnf * pow(achi(xField), 2.);
Acnf4 = pow(Acnf, 4);
T00E += source(xField) * Acnf4;
//------------------------
//(D_i achi)^2
//------------------------
Dx_achi = phi02 * (achi(xField + 0) - achi(xField - 0));
Dy_achi = phi02 * (achi(xField + 1) - achi(xField - 1));
Dz_achi = phi02 * (achi(xField + 2) - achi(xField - 2));
Dx_achi_Dx_achi = Dx_achi * Dx_achi;
Dy_achi_Dy_achi = Dy_achi * Dy_achi;
Dz_achi_Dz_achi = Dz_achi * Dz_achi;
gradientachi_squared = Dx_achi_Dx_achi + Dy_achi_Dy_achi + Dz_achi_Dz_achi;
//------------------------
// Useful quantities
aphif = phi0 * achi(xField);
daphidt = phi0 * aq(xField) / a2 / a;
//------------------------
// STRESS TENSOR COMPONENTS
//------------------------
pot = boxsize2 * ((-cosmo.mu_as * cosmo.mu_as / 2.0 + (cosmo.kappa_as / 3.0 + cosmo.lambda_as / 4.0 * aphif) * aphif) * aphif * aphif);
lag = -0.5 * (-daphidt * daphidt + gradientachi_squared) - pot;
//
source(xField) = source(xField) * Acnf4 - (-0.5 * daphidt * daphidt - pot - 0.5 * gradientachi_squared) * a3;
if (sim.vector_flag == VECTOR_ELLIPTIC)
{
T0i(xField, 0) = Acnf4 * T0i(xField, 0) - Dx_achi * daphidt * a4;
T0i(xField, 1) = Acnf4 * T0i(xField, 1) - Dy_achi * daphidt * a4;
T0i(xField, 2) = Acnf4 * T0i(xField, 2) - Dz_achi * daphidt * a4;
}
Sij(xField, 0, 0) = Acnf4 * Sij(xField, 0, 0) + (Dx_achi_Dx_achi + lag) * a3;
Sij(xField, 1, 1) = Acnf4 * Sij(xField, 1, 1) + (Dy_achi_Dy_achi + lag) * a3;
Sij(xField, 2, 2) = Acnf4 * Sij(xField, 2, 2) + (Dz_achi_Dz_achi + lag) * a3;
Sij(xField, 0, 1) = Acnf4 * Sij(xField, 0, 1) + Dy_achi * Dx_achi * a3;
Sij(xField, 0, 2) = Acnf4 * Sij(xField, 0, 2) + Dz_achi * Dx_achi * a3;
Sij(xField, 1, 2) = Acnf4 * Sij(xField, 1, 2) + Dz_achi * Dy_achi * a3;
nT_cdm(xField) = source(xField) - (double)(sim.As_full_trace) * (Sij(xField, 0, 0) + Sij(xField, 0, 0) + Sij(xField, 0, 0));
// do misc
T00hom += source(xField);
T00As_hom -= (-0.5 * daphidt * daphidt - pot - 0.5 * gradientachi_squared) * a3;
pressavgT += (+Sij(xField, 0, 0) + Sij(xField, 1, 1) + Sij(xField, 2, 2)) / 3.;
pressavg += (+Dx_achi_Dx_achi + Dy_achi_Dy_achi + Dz_achi_Dz_achi + 3. * lag) * a3 / 3.;
Vav += pot * rhocnorm;
achiav += achi(xField);
achi2av += achi(xField) * achi(xField);
aqav += aq(xField);
aq2av += aq(xField) * aq(xField);
if (achi(xField) > 0.01)
{
fracp += 1;
}
if (achi(xField) < -0.01)
fracm += 1;
if (strcmp(sim.As_solver, "QSA") == 0 && sim.QSAq > 0 && a > sim.aMG)
aq(xField) = achi(xField); // prepare
}
source.updateHalo();
if (sim.vector_flag == VECTOR_ELLIPTIC)
{
T0i.updateHalo();
}
Sij.updateHalo();
double numpts3d = pow((double)sim.numpts, 3.);
parallel.sum<double>(T00hom);
parallel.sum<double>(T00E);
parallel.sum<double>(T00As_hom);
parallel.sum<double>(pressavg);
parallel.sum<double>(pressavgT);
parallel.sum<double>(Vav);
parallel.sum<double>(achiav);
parallel.sum<double>(achi2av);
parallel.sum<double>(aqav);
parallel.sum<double>(aq2av);
parallel.sum<double>(fracp);
parallel.sum<double>(fracm);
T00As_hom /= numpts3d;
T00hom /= numpts3d;
T00E /= numpts3d;
Vav /= numpts3d;
achiav /= numpts3d;
achi2av /= numpts3d;
aqav /= numpts3d;
aq2av /= numpts3d;
pressavg /= numpts3d;
pressavgT /= numpts3d;
fracp /= numpts3d;
fracm /= numpts3d;
eospar = pressavg / T00As_hom;
eosparT = pressavgT / T00hom;
avgsource = (T00hom + cosmo.Omega_rad / a + cosmo.Omega_Lambda * pow(a, 3.0));
if (cycle % CYCLE_INFO_INTERVAL == 0)
{
COUT << " cycle " << cycle << ", background information: z = " << (1. / a) - 1. << ", average T00 = " << T00hom << ", background model = " << cosmo.Omega_cdm + cosmo.Omega_b + bg_ncdm(a, cosmo) << endl;
}
}
void doUpdateAchiBackground(double &achiB, double &aqB, double a, const double fourpiG,
const double dtau, const cosmology cosmo, const metadata sim, double avgsource)
{
int i;
double tmpa = a;
for (i = 0; i < sim.nAs_numsteps_dynbck; i++)
rungekutta4achi(achiB, aqB, tmpa, fourpiG, dtau / sim.nAs_numsteps_dynbck, cosmo, sim, avgsource);
}