-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface_main.hpp
667 lines (615 loc) · 27.7 KB
/
interface_main.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
#ifndef INTERFACE_HEADER
#define INTERFACE_HEADER
#endif
#ifndef PI
#define PI 3.1415
#endif
#ifndef Cplx
#define Cplx Imag
#endif
using namespace std;
using namespace LATfield2;
void doReadCommandLine(char **argv, int argc, char *&settingsfile, char *&precisionfile, int &n, int &m, int &io_size, int &io_group_size)
{
int i;
for (i = 1; i < argc; i++)
{
if (argv[i][0] != '-')
continue;
switch (argv[i][1])
{
case 's':
settingsfile = argv[++i]; // settings file name
break;
case 'n':
n = atoi(argv[++i]); // size of the dim 1 of the processor grid
break;
case 'm':
m = atoi(argv[++i]); // size of the dim 2 of the processor grid
break;
case 'p':
#ifndef HAVE_CLASS
cout << "HAVE_CLASS needs to be set at compilation to use CLASS precision files" << endl;
exit(-100);
#endif
precisionfile = argv[++i];
break;
case 'i':
#ifndef EXTERNAL_IO
cout << "EXTERNAL_IO needs to be set at compilation to use the I/O server" << endl;
exit(-1000);
#endif
io_size = atoi(argv[++i]);
break;
case 'g':
#ifndef EXTERNAL_IO
cout << "EXTERNAL_IO needs to be set at compilation to use the I/O server" << endl;
exit(-1000);
#endif
io_group_size = atoi(argv[++i]);
}
}
}
void doTitleAndSettings(int n, int m, char *settingsfile,
int &numparam, double &start_time,
char *filename, cosmology &cosmo,
metadata &sim, icsettings &ic, parameter *params)
{
COUT << COLORTEXT_WHITE << endl;
COUT
<< " ____ ______ ______ \n"
<< " .'. ..''''| `. .'.~ ~. | | |`````|`````| .~ ~. |.. | \n"
<< " .''```. .'' |______ `. .' | || | | | || || ``.. | \n"
<< " .' `. ..' | `. .' | || | | | || || ``.. | \n"
<< ".' `.....'' |___________`.' `.______.' |_______`._______.' | | `.______.' | ``| \n"
<< COLORTEXT_RESET << endl;
COUT << "version 1.0 running on " << n * m << " cores." << endl;
if (settingsfile == NULL)
{
COUT << COLORTEXT_RED << " error" << COLORTEXT_RESET << ": no settings file specified!" << endl;
parallel.abortForce();
}
COUT << " initializing..." << endl;
start_time = MPI_Wtime();
numparam = loadParameterFile(settingsfile, params);
int usedparams = parseMetadata(params, numparam, sim, cosmo, ic);
COUT << " parsing of settings file completed. " << numparam << " parameters found, " << usedparams << " were used." << endl;
snprintf(filename, SIZFILENAME, "%s%s_settings_used.ini", sim.output_path, sim.basename_generic);
saveParameterFile(filename, params, numparam);
free(params);
}
void doICs(cosmology &cosmo, double &a,
metadata &sim, icsettings &ic,
Field<Real> &achi, Field<Real> &aq,
double avgsource, double fourpiG,
double tau, double dtau, double dtau_old,
string h5filename,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_cdm,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_b,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_ncdm,
double *maxvel, Field<Real> &phi, Field<Real> &chi, Field<Real> &Bi,
Field<Real> &hij, Field<Real> &source, Field<Cplx> &scalarFT,
Field<Cplx> &BiFT, Field<Cplx> &SijFT, PlanFFT<Cplx> &plan_phi,
PlanFFT<Cplx> &plan_chi, PlanFFT<Cplx> &plan_Bi, PlanFFT<Cplx> &plan_Sij,
PlanFFT<Cplx> &plan_source,
parameter *params, int &numparam, int &numspecies, int cycle, int snapcount,
int pkcount, int restartcount, set<long> *IDbacklog,
PlanFFT<Cplx> &plan_achi, PlanFFT<Cplx> &plan_aq, Field<Real> &nT_cdm)
{
int i;
rKSite kFT(scalarFT.lattice());
if (ic.generator == ICGEN_BASIC)
generateIC_basic(sim, ic, cosmo, avgsource, fourpiG, pcls_cdm, pcls_b, pcls_ncdm, maxvel, &phi,
&chi, &Bi, &source, &hij, &scalarFT, &BiFT, &SijFT, &plan_phi, &plan_chi, &plan_Bi,
&plan_source, &plan_Sij, params, numparam); // generates ICs on the fly
else if (ic.generator == ICGEN_READ_FROM_DISK)
readIC(sim, ic, cosmo, avgsource, fourpiG, a, tau, dtau, dtau_old, pcls_cdm, pcls_b, pcls_ncdm, maxvel,
&phi, &chi, &Bi, &source, &hij, &scalarFT, &BiFT, &SijFT, &plan_phi, &plan_chi, &plan_Bi, &plan_source,
&plan_Sij, cycle, snapcount, pkcount, restartcount, IDbacklog);
#ifdef ICGEN_PREVOLUTION
else if (ic.generator == ICGEN_PREVOLUTION)
generateIC_prevolution(sim, ic, cosmo, avgsource, fourpiG, a, tau, dtau, dtau_old, pcls_cdm, pcls_b, pcls_ncdm,
maxvel, &phi, &chi, &Bi, &source, &hij, &scalarFT, &BiFT, &SijFT, &plan_phi, &plan_chi,
&plan_Bi, &plan_source, &plan_Sij, params, numparam);
#endif
#ifdef ICGEN_FALCONIC
else if (ic.generator == ICGEN_FALCONIC)
maxvel[0] = generateIC_FalconIC(sim, ic, cosmo, fourpiG, dtau, pcls_cdm, pcls_ncdm, maxvel + 1, &phi, &source,
&chi, &Bi, &source, &hij, &scalarFT, &BiFT, &SijFT, &plan_phi, &plan_source,
&plan_chi, &plan_Bi, &plan_source, &plan_Sij);
#endif
else
{
COUT << " error: IC generator not implemented!" << endl;
parallel.abortForce();
}
if (sim.baryon_flag > 1)
{
COUT << " error: baryon_flag > 1 after IC generation, something went wrong in IC generator!" << endl;
parallel.abortForce();
}
numspecies = 1 + sim.baryon_flag + cosmo.num_ncdm;
parallel.max<double>(maxvel, numspecies);
if (sim.gr_flag > 0)
{
for (i = 0; i < numspecies; i++)
maxvel[i] /= sqrt(maxvel[i] * maxvel[i] + 1.0);
}
}
void doConstructSEtensor(
const cosmology cosmo, double a, const metadata sim,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_cdm,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_b,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_ncdm,
Field<Real> &phi, Field<Real> &phiJ, Field<Real> &chi,
Field<Real> &achi, Field<Real> &T0i,
Field<Real> &source, Field<Real> &Sij)
{
int i;
double tmp;
double fac = 0.5 * pow(cosmo.mu_as / (sqrt(cosmo.lambda_as) * cosmo.M_as), 2) * (double)sim.As_use_phiJ_SE;
double fac2;
Site x(phi.lattice());
// construct stress-energy tensor
projection_init(&source);
if (sim.gr_flag > 0)
{
if (a > sim.aMG)
fac2 = 1.;
else
fac2 = 0.;
// convert to Jordan frame potential
for (x.first(); x.test(); x.next())
{
phiJ(x) = phi(x) - fac2 * fac * pow(achi(x), 2);
}
phiJ.updateHalo();
projection_T00_project(pcls_cdm, &source, a, &phiJ);
if (sim.baryon_flag)
projection_T00_project(pcls_b, &source, a, &phiJ);
for (i = 0; i < cosmo.num_ncdm; i++)
{
if (a >= 1. / (sim.z_switch_deltancdm[i] + 1.) && sim.numpcl[1 + sim.baryon_flag + i] > 0)
projection_T00_project(pcls_ncdm + i, &source, a, &phiJ);
else if (sim.radiation_flag == 0 || (a >= 1. / (sim.z_switch_deltancdm[i] + 1.) && sim.numpcl[1 + sim.baryon_flag + i] == 0))
{
tmp = bg_ncdm(a, cosmo, i);
for (x.first(); x.test(); x.next())
source(x) += tmp;
}
}
}
else
{
scalarProjectionCIC_project(pcls_cdm, &source);
if (sim.baryon_flag)
scalarProjectionCIC_project(pcls_b, &source);
for (i = 0; i < cosmo.num_ncdm; i++)
{
if (a >= 1. / (sim.z_switch_deltancdm[i] + 1.) && sim.numpcl[1 + sim.baryon_flag + i] > 0)
scalarProjectionCIC_project(pcls_ncdm + i, &source);
}
}
projection_T00_comm(&source);
if (sim.vector_flag == VECTOR_ELLIPTIC)
{
projection_init(&T0i);
projection_T0i_project(pcls_cdm, &T0i, &phiJ);
if (sim.baryon_flag)
projection_T0i_project(pcls_b, &T0i, &phiJ);
for (i = 0; i < cosmo.num_ncdm; i++)
{
if (a >= 1. / (sim.z_switch_Bncdm[i] + 1.) && sim.numpcl[1 + sim.baryon_flag + i] > 0)
projection_T0i_project(pcls_ncdm + i, &T0i, &phiJ);
}
projection_T0i_comm(&T0i);
}
projection_init(&Sij);
projection_Tij_project(pcls_cdm, &Sij, a, &phiJ);
if (sim.baryon_flag)
projection_Tij_project(pcls_b, &Sij, a, &phiJ);
if (a >= 1. / (sim.z_switch_linearchi + 1.))
{
for (i = 0; i < cosmo.num_ncdm; i++)
{
if (sim.numpcl[1 + sim.baryon_flag + i] > 0)
projection_Tij_project(pcls_ncdm + i, &Sij, a, &phiJ);
}
}
projection_Tij_comm(&Sij);
}
void doBackgroundOutput(
double phik0, const cosmology cosmo, double a, const metadata sim,
char *filename, FILE *outfile, int cycle, int snapcount,
double tau, double fourpiG, double avgsource, double T00hom, int N_as,
double T00As_hom, double eospar, double eosparT, double Vav, double T00J, double T00E,
double achiav, double achi2av, double aqav, double aq2av,
double achiB, double aqB, double tau2,
double fracp, double fracm, double maxvelCDM,
int pkcount)
{
int snapoutb = 0, pkoutb = 0;
string tmp;
// record some background data
if (parallel.isRoot())
{
snprintf(filename, SIZFILENAME, "%s%s_background.dat", sim.output_path, sim.basename_generic);
// modification -- fix annoying issue:
if (cycle == 0)
outfile = fopen(filename, "w"); // make output files new
else
outfile = fopen(filename, "a");
if (outfile == NULL)
{
cout << " error opening file for background output!" << endl;
}
else // modification -- add columns
{
tmp = "# background statistics\n# cycle tau/boxsize a conformal H/H0 ";
tmp += "phi(k=0) T00(k=0) n_as eta T00As(k=0) eospar eosparT ";
tmp += "Vav T00J T00E achiav achi2av aqav aq2av achib aqb tau2 avgsource ";
tmp += "fracp fracm ";
tmp += "maxvelCDM snapoutbool pkoutbool";
tmp += "\n";
if (cycle == 0)
{
fprintf(outfile, "%s", tmp.c_str());
}
if (snapcount < sim.num_snapshot && 1. / a <= sim.z_snapshot[snapcount] + 1.0000001)
snapoutb = 1;
if (pkcount < sim.num_pk && 1. / a <= sim.z_pk[pkcount] + 1.0000001)
pkoutb = 1;
tmp = " %6d %e %e %e %e %e %d %e %e %e %e %e %e %e %e %e %e %e ";
tmp += "%e %e %e %e %e %e %e %d %d";
tmp += "\n";
fprintf(outfile, tmp.c_str(),
cycle, tau, a, Hconf(a, fourpiG, cosmo, avgsource) / sqrt(2. * fourpiG / 3.),
phik0, T00hom, N_as,
T00hom / (a * a * a) / pow(cosmo.M_as * cosmo.mu_as, 2.0), T00As_hom, eospar,
eosparT, Vav, T00J, T00E, achiav, achi2av, aqav, aq2av, achiB, aqB, tau2, avgsource,
fracp, fracm, maxvelCDM, snapoutb, pkoutb);
fclose(outfile);
}
}
}
void doSolveEinsteinEquation(
const cosmology cosmo, double a, const metadata sim,
Field<Real> &phi, Field<Real> &chi, Field<Real> &Bi,
Field<Real> &Sij, Field<Real> &source, Field<Real> &source2, double T00hom, double avgsource,
Field<Cplx> &scalarFT, Field<Cplx> &BiFT, Field<Cplx> &SijFT,
PlanFFT<Cplx> &plan_source, PlanFFT<Cplx> &plan_source2, PlanFFT<Cplx> &plan_phi, PlanFFT<Cplx> &plan_chi,
PlanFFT<Cplx> &plan_Bi, PlanFFT<Cplx> &plan_Sij,
double dx, double fourpiG, double dtau_old, int cycle, double &phik0, int &done_hij)
{
if (cycle > 0)
{
if (sim.gr_flag > 0)
{
if (dtau_old > 0.)
{
// use source2 to not have to redo projection at pk output (since we are keeping scalar2 anyway)
prepareFTsource<Real>(phi, chi, source, T00hom, // cosmo.Omega_cdm + cosmo.Omega_b + bg_ncdm(a, cosmo) + cosmo.Omega_sym,
source2, 3. * Hconf(a, fourpiG, cosmo, avgsource) * dx * dx / dtau_old,
fourpiG * dx * dx / a,
3. * Hconf(a, fourpiG, cosmo, avgsource) * Hconf(a, fourpiG, cosmo, avgsource) * dx * dx); // prepare nonlinear source for phi update
plan_source2.execute(FFT_FORWARD); // go to k-space
solveModifiedPoissonFT(scalarFT, scalarFT, 1. / (dx * dx), 3. * Hconf(a, fourpiG, cosmo, avgsource) / dtau_old); // phi update (k-space)
plan_phi.execute(FFT_BACKWARD);
}
}
else
{
plan_source.execute(FFT_FORWARD); // Newton: directly go to k-space
solveModifiedPoissonFT(scalarFT, scalarFT, fourpiG / a); // Newton: phi update (k-space)
plan_phi.execute(FFT_BACKWARD);
}
phi.updateHalo();
}
rKSite kFT(scalarFT.lattice());
if (kFT.setCoord(0, 0, 0))
{ // prepare for background output
phik0 = scalarFT(kFT).real();
}
prepareFTsource<Real>(phi, Sij, Sij, 2. * fourpiG * dx * dx / a); // prepare nonlinear source for additional equations
plan_Sij.execute(FFT_FORWARD);
if (cycle > 0)
{
projectFTscalar(SijFT, scalarFT); // construct chi by scalar projection (k-space)
plan_chi.execute(FFT_BACKWARD);
chi.updateHalo();
if (sim.gr_flag > 0)
{
if (sim.vector_flag == VECTOR_ELLIPTIC)
{
plan_Bi.execute(FFT_FORWARD);
projectFTvector(BiFT, BiFT, fourpiG * dx * dx); // solve B using elliptic constraint (k-space)
}
else
evolveFTvector(SijFT, BiFT, a * a * dtau_old); // evolve B using vector projection (k-space)
plan_Bi.execute(FFT_BACKWARD);
Bi.updateHalo();
}
// don't do anything since hij is only used for output
done_hij = 0;
}
}
void doWriteSpectra(double dtau, int cycle, double tau,
metadata &sim, cosmology &cosmo, double avgsource, const double fourpiG, const double a, int &pkcount,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_cdm,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_b,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_ncdm,
Field<Real> *phi, Field<Real> *achi, Field<Real> *aq, Field<Real> *chi,
Field<Real> *Bi, Field<Real> *hij, Field<Real> *source,
Field<Real> *scalar,
Field<Cplx> *scalarFT, Field<Cplx> *BiFT, Field<Cplx> *SijFT,
PlanFFT<Cplx> *plan_phi, PlanFFT<Cplx> *plan_achi, PlanFFT<Cplx> *plan_aq,
PlanFFT<Cplx> *plan_chi, PlanFFT<Cplx> *plan_Bi,
PlanFFT<Cplx> *plan_source, PlanFFT<Cplx> *plan_Sij,
PlanFFT<Cplx> *plan_scalar, int &done_hij
)
{
COUT << COLORTEXT_CYAN << " writing power spectra" << COLORTEXT_RESET << " at z = " << ((1. / a) - 1.) << " (cycle " << cycle << "), tau/boxsize = " << tau << endl;
writeSpectra(sim, cosmo, avgsource, fourpiG, a, pkcount,
pcls_cdm, pcls_b, pcls_ncdm, phi, achi, aq, chi, Bi, hij, source, scalar,
scalarFT, BiFT, SijFT, plan_phi, plan_achi, plan_aq, plan_chi, plan_Bi,
plan_source, plan_Sij, plan_scalar, done_hij
);
pkcount++;
}
// debug
/*To use:
Field<Real> *fields[2];
fields[0] = update_cdm_fields[0];
fields[1] = update_cdm_fields[1];
printMaxMinFields(fields, 2);
*/
void printMaxMinFields(Field<Real> **fields, int length)
{
Site x(fields[0]->lattice());
double vmin, vmax, vval;
for (int i = 0; i < length; i++)
{
vmin = 1e10;
vmax = 0;
for (x.first(); x.test(); x.next())
{
vval = abs((*fields[i])(x));
if (vval > vmax)
vmax = vval;
if (vval < vmin)
vmin = vval;
}
parallel.max<double>(vmax);
parallel.min<double>(vmin);
COUT << "Field " << i << " has min/max " << vmin << " / " << vmax << endl;
}
}
void doUpdateParticlesAndBackground(
const metadata sim, const cosmology cosmo, double avgsource, double fourpiG, double &a,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> &pcls_cdm,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> &pcls_b,
Particles_gevolution<part_simple, part_simple_info, part_simple_dataType> *pcls_ncdm,
double dtau, double dtau_old, double dx, double *maxvel, double *f_params,
icsettings ic, Field<Real> **update_cdm_fields, Field<Real> **update_b_fields,
Field<Real> **update_ncdm_fields,
int nfields, int numspecies, int *numsteps_ncdm)
{
int i, j;
double tmp;
// compute number of step subdivisions for ncdm particle updates
for (i = 0; i < cosmo.num_ncdm; i++)
{
if (dtau * maxvel[i + 1 + sim.baryon_flag] > dx * sim.movelimit)
numsteps_ncdm[i] = (int)ceil(dtau * maxvel[i + 1 + sim.baryon_flag] / dx / sim.movelimit);
else
numsteps_ncdm[i] = 1;
}
for (i = 0; i < cosmo.num_ncdm; i++) // non-cold DM particle update
{
if (sim.numpcl[1 + sim.baryon_flag + i] == 0)
continue;
tmp = a;
for (j = 0; j < numsteps_ncdm[i]; j++)
{
f_params[0] = tmp;
f_params[1] = tmp * tmp * (double)sim.numpts;
if (sim.As_5th_force * sim.fifth > 0) // modification
maxvel[i + 1 + sim.baryon_flag] = pcls_ncdm[i].updateVel(update_q_5th, (dtau + dtau_old) / 2. / (double)numsteps_ncdm[i], update_ncdm_fields, nfields, f_params);
else if (sim.As_5th_force_Newton * sim.fifth > 0)
maxvel[i + 1 + sim.baryon_flag] = pcls_ncdm[i].updateVel(update_q_Newton_5th, (dtau + dtau_old) / 2. / (double)numsteps_ncdm[i], update_ncdm_fields, nfields, f_params);
else if (sim.gr_flag > 0)
maxvel[i + 1 + sim.baryon_flag] = pcls_ncdm[i].updateVel(update_q, (dtau + dtau_old) / 2. / (double)numsteps_ncdm[i], update_ncdm_fields, (1. / a < ic.z_relax + 1. ? 3 : 2), f_params);
else
maxvel[i + 1 + sim.baryon_flag] = pcls_ncdm[i].updateVel(update_q_Newton, (dtau + dtau_old) / 2. / (double)numsteps_ncdm[i], update_ncdm_fields, ((sim.radiation_flag + sim.fluid_flag > 0 && a < 1. / (sim.z_switch_linearchi + 1.)) ? 2 : 1), f_params);
rungekutta4bg(tmp, fourpiG, 0.5 * dtau / (double)numsteps_ncdm[i], cosmo, avgsource);
f_params[0] = tmp;
f_params[1] = tmp * tmp * (double)sim.numpts;
if (sim.As_5th_force * sim.fifth > 0) // modification
pcls_ncdm[i].moveParticles(update_pos_5th, dtau / (double)numsteps_ncdm[i], update_ncdm_fields, nfields, f_params);
else if (sim.As_5th_force_Newton * sim.fifth > 0)
pcls_ncdm[i].moveParticles(update_pos_Newton, dtau / (double)numsteps_ncdm[i], NULL, 0, f_params);
else if (sim.gr_flag > 0)
pcls_ncdm[i].moveParticles(update_pos, dtau / (double)numsteps_ncdm[i], update_ncdm_fields, (1. / a < ic.z_relax + 1. ? 3 : 2), f_params);
else
pcls_ncdm[i].moveParticles(update_pos_Newton, dtau / (double)numsteps_ncdm[i], NULL, 0, f_params);
rungekutta4bg(tmp, fourpiG, 0.5 * dtau / (double)numsteps_ncdm[i], cosmo, avgsource);
}
}
// cdm and baryon particle update
f_params[0] = a;
f_params[1] = a * a * (double)sim.numpts;
f_params[3] = Hconf(a, fourpiG, cosmo, avgsource);
if (sim.As_5th_force * sim.fifth > 0) // modification
{
maxvel[0] = pcls_cdm.updateVel(update_q_5th, (dtau + dtau_old) / 2., update_cdm_fields, nfields, f_params);
if (sim.baryon_flag)
maxvel[1] = pcls_b.updateVel(update_q_5th, (dtau + dtau_old) / 2., update_b_fields, nfields, f_params);
}
else if (sim.As_5th_force_Newton * sim.fifth > 0)
{
maxvel[0] = pcls_cdm.updateVel(update_q_Newton_5th, (dtau + dtau_old) / 2., update_cdm_fields, nfields, f_params);
if (sim.baryon_flag)
{
maxvel[1] = pcls_b.updateVel(update_q_Newton_5th, (dtau + dtau_old) / 2., update_b_fields, nfields, f_params);
}
}
else if (sim.gr_flag > 0)
{
maxvel[0] = pcls_cdm.updateVel(update_q, (dtau + dtau_old) / 2., update_cdm_fields, (1. / a < ic.z_relax + 1. ? 3 : 2), f_params);
if (sim.baryon_flag)
maxvel[1] = pcls_b.updateVel(update_q, (dtau + dtau_old) / 2., update_b_fields, (1. / a < ic.z_relax + 1. ? 3 : 2), f_params);
}
else
{
maxvel[0] = pcls_cdm.updateVel(update_q_Newton, (dtau + dtau_old) / 2., update_cdm_fields, ((sim.radiation_flag + sim.fluid_flag > 0 && a < 1. / (sim.z_switch_linearchi + 1.)) ? 2 : 1), f_params);
if (sim.baryon_flag)
maxvel[1] = pcls_b.updateVel(update_q_Newton, (dtau + dtau_old) / 2., update_b_fields, ((sim.radiation_flag + sim.fluid_flag > 0 && a < 1. / (sim.z_switch_linearchi + 1.)) ? 2 : 1), f_params);
}
rungekutta4bg(a, fourpiG, 0.5 * dtau, cosmo, avgsource); // evolve background by half a time step
f_params[0] = a;
f_params[1] = a * a * (double)sim.numpts;
f_params[3] = Hconf(a, fourpiG, cosmo, avgsource);
if (sim.As_5th_force * sim.fifth > 0) // modification
{
pcls_cdm.moveParticles(update_pos_5th, dtau, update_cdm_fields, nfields, f_params);
if (sim.baryon_flag)
pcls_b.moveParticles(update_pos_5th, dtau, update_b_fields, nfields, f_params);
}
else if (sim.As_5th_force_Newton * sim.fifth > 0)
{
pcls_cdm.moveParticles(update_pos_Newton, dtau, NULL, 0, f_params);
if (sim.baryon_flag)
pcls_b.moveParticles(update_pos_Newton, dtau, NULL, 0, f_params);
}
else if (sim.gr_flag > 0)
{
pcls_cdm.moveParticles(update_pos, dtau, update_cdm_fields, (1. / a < ic.z_relax + 1. ? 3 : 0), f_params);
if (sim.baryon_flag)
pcls_b.moveParticles(update_pos, dtau, update_b_fields, (1. / a < ic.z_relax + 1. ? 3 : 0), f_params);
}
else
{
pcls_cdm.moveParticles(update_pos_Newton, dtau, NULL, 0, f_params);
if (sim.baryon_flag)
pcls_b.moveParticles(update_pos_Newton, dtau, NULL, 0, f_params);
}
rungekutta4bg(a, fourpiG, 0.5 * dtau, cosmo, avgsource); // evolve background by half a time step
parallel.max<double>(maxvel, numspecies);
if (sim.gr_flag > 0)
{
for (i = 0; i < numspecies; i++)
maxvel[i] /= sqrt(maxvel[i] * maxvel[i] + 1.0);
}
// done particle update
}
bool startedMG = false;
void doSetNewTimestep(double &dtau, double dx, double a, int &N_as, metadata &sim, const cosmology cosmo,
double avgsource, double fourpiG, int pkcount, int snapcount, int snapcount2, bool &writeSnap, bool &writeSnap2, bool &writeSpec,
int cycle, double maxvelcdm)
{
double zmax;
double Cf;
if (!startedMG && a > sim.aMG && sim.fifth > 0)
{
COUT << "Adjusting Courant factor for MG\n";
Cf = sim.Cf_MG;
N_as = max(int(Cf / sim.As_Courant + 0.5), 1);
startedMG = true;
}
else if (!startedMG)
{
Cf = sim.Cf;
}
else if (a > sim.aMG)
{
Cf = sim.Cf_MG;
}
double tol = 1e-1 * Cf * dx;
// consider if now is output
writeSpec = (pkcount < sim.num_pk && 1. / a - 1 - sim.z_pk[pkcount] <= tol);
writeSnap = (snapcount < sim.num_snapshot && 1. / a - 1 - sim.z_snapshot[snapcount] <= tol);
writeSnap2 = (snapcount2 < sim.num_snapshot2 && 1. / a - 1 - sim.z_snapshot2[snapcount2] <= tol);
// standard choice of dtau
dtau = Cf * dx;
if (!writeSnap && (sim.writefirstsnap > 0))
{
sim.num_snapshot++;
writeSnap = true;
sim.writefirstsnap = 0;
// fix sim.z_snapcount
double tmp[sim.num_snapshot];
tmp[snapcount] = sim.z_snapshot[snapcount];
sim.z_snapshot[snapcount] = 1. / a - 1.;
for (int i = snapcount + 1; i < sim.num_snapshot; i++)
{
tmp[i] = sim.z_snapshot[i];
sim.z_snapshot[i] = tmp[i - 1];
}
}
if (!writeSpec && (sim.writefirstspec > 0))
{
sim.num_pk++;
writeSpec = true;
sim.writefirstspec = 0;
// fix sim.z_snapcount
double tmp[sim.num_pk];
tmp[pkcount] = sim.z_pk[pkcount];
sim.z_pk[pkcount] = 1. / a - 1.;
for (int i = pkcount + 1; i < sim.num_pk; i++)
{
tmp[i] = sim.z_pk[i];
sim.z_pk[i] = tmp[i - 1];
}
}
if (writeSpec)
pkcount++;
if (writeSnap)
snapcount++;
if (writeSnap2)
snapcount2++;
double anext = a;
rungekutta4bg(anext, fourpiG, dtau, cosmo, avgsource);
// consider if the iteration after next dtau is output and adjust dtau
bool specnext = (pkcount < sim.num_pk && 1. / anext - 1 - sim.z_pk[pkcount] <= tol);
bool snapnext = (snapcount < sim.num_snapshot && 1. / anext - 1 - sim.z_snapshot[snapcount] <= tol);
bool snapnext2 = (snapcount2 < sim.num_snapshot2 && 1. / anext - 1 - sim.z_snapshot2[snapcount2] <= tol);
if (snapnext || snapnext2 || specnext || anext > 1)
{
if (anext < 1)
zmax = max(sim.z_pk[pkcount], max(sim.z_snapshot[snapcount], sim.z_snapshot2[snapcount2]));
else
zmax = 0;
double anext = 1. / (1 + zmax);
rungekutta4dtau(dtau, a, fourpiG, anext - a, cosmo, avgsource);
COUT << COLORTEXT_YELLOW << "z = " << 1 / a - 1. << COLORTEXT_RESET << ": Adding one iteration for redshift precision outputs.\n";
}
}
void doCoutCycleInfo(int cycle, double dtau, double dx, double a,
double fourpiG, const cosmology cosmo, const metadata sim,
int *numsteps_ncdm, double *maxvel, double avgsource)
{
int i;
if (cycle % CYCLE_INFO_INTERVAL == 0)
{
COUT << " cycle " << cycle << ", time integration information: max |v| = " << maxvel[0] << " (cdm Courant factor = " << maxvel[0] * dtau / dx;
if (sim.baryon_flag)
{
COUT << "), baryon max |v| = " << maxvel[1] << " (Courant factor = " << maxvel[1] * dtau / dx;
}
COUT << "), time step / Hubble time = " << Hconf(a, fourpiG, cosmo, avgsource) * dtau;
for (i = 0; i < cosmo.num_ncdm; i++)
{
if (i == 0)
{
COUT << endl
<< " time step subdivision for ncdm species: ";
}
COUT << numsteps_ncdm[i] << " (max |v| = " << maxvel[i + 1 + sim.baryon_flag] << ")";
if (i < cosmo.num_ncdm - 1)
{
COUT << ", ";
}
}
COUT << endl;
}
}