This repository was archived by the owner on Jul 26, 2022. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathpackers.py
799 lines (680 loc) · 27.1 KB
/
packers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
"""
Msgpack serializer support for reading and writing pandas data structures
to disk
portions of msgpack_numpy package, by Lev Givon were incorporated
into this module (and tests_packers.py)
License
=======
Copyright (c) 2013, Lev Givon.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Lev Givon nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from datetime import datetime, date, timedelta
from dateutil.parser import parse
import os
from textwrap import dedent
import warnings
import numpy as np
from pandas import compat
from pandas.compat import u, u_safe
from pandas.types.common import (is_categorical_dtype, is_object_dtype,
needs_i8_conversion, pandas_dtype)
from pandas import (Timestamp, Period, Series, DataFrame, # noqa
Index, MultiIndex, Float64Index, Int64Index,
Panel, RangeIndex, PeriodIndex, DatetimeIndex, NaT,
Categorical, CategoricalIndex)
try:
from pandas import SparseSeries, SparseDataFrame
except ImportError:
from pandas.sparse.api import SparseSeries, SparseDataFrame
try:
from pandas.core.sparse.array import BlockIndex, IntIndex
except ImportError:
from pandas.sparse.array import BlockIndex, IntIndex
from pandas.core.generic import NDFrame
try:
from pandas.errors import PerformanceWarning
except ImportError:
from pandas.core.common import PerformanceWarning
from pandas.io.common import get_filepath_or_buffer
from pandas.core.internals import BlockManager, make_block, _safe_reshape
import pandas.core.internals as internals
from pandas_msgpack import _is_pandas_legacy_version
from pandas_msgpack.msgpack import (Unpacker as _Unpacker,
Packer as _Packer,
ExtType)
from pandas_msgpack._move import (
BadMove as _BadMove,
move_into_mutable_buffer as _move_into_mutable_buffer,
)
NaTType = type(NaT)
# check which compression libs we have installed
try:
import zlib
def _check_zlib():
pass
except ImportError:
def _check_zlib():
raise ImportError('zlib is not installed')
_check_zlib.__doc__ = dedent(
"""\
Check if zlib is installed.
Raises
------
ImportError
Raised when zlib is not installed.
""",
)
try:
import blosc
def _check_blosc():
pass
except ImportError:
def _check_blosc():
raise ImportError('blosc is not installed')
_check_blosc.__doc__ = dedent(
"""\
Check if blosc is installed.
Raises
------
ImportError
Raised when blosc is not installed.
""",
)
# until we can pass this into our conversion functions,
# this is pretty hacky
compressor = None
def to_msgpack(path_or_buf, *args, **kwargs):
"""
msgpack (serialize) object to input file path
Parameters
----------
path_or_buf : string File path, buffer-like, or None
if None, return generated string
args : an object or objects to serialize
encoding: encoding for unicode objects
append : boolean whether to append to an existing msgpack
(default is False)
compress : type of compressor (zlib or blosc), default to None (no
compression)
"""
global compressor
compressor = kwargs.pop('compress', None)
if compressor:
compressor = u(compressor)
append = kwargs.pop('append', None)
if append:
mode = 'a+b'
else:
mode = 'wb'
def writer(fh):
for a in args:
fh.write(pack(a, **kwargs))
if isinstance(path_or_buf, compat.string_types):
with open(path_or_buf, mode) as fh:
writer(fh)
elif path_or_buf is None:
buf = compat.BytesIO()
writer(buf)
return buf.getvalue()
else:
writer(path_or_buf)
def read_msgpack(path_or_buf, encoding='utf-8', iterator=False, **kwargs):
"""
Load msgpack pandas object from the specified
file path
Parameters
----------
path_or_buf : string File path, BytesIO like or string
encoding: Encoding for decoding msgpack str type
iterator : boolean, if True, return an iterator to the unpacker
(default is False)
Returns
-------
obj : type of object stored in file
"""
path_or_buf, _, _ = get_filepath_or_buffer(path_or_buf)
if iterator:
return Iterator(path_or_buf)
def read(fh):
l = list(unpack(fh, encoding=encoding, **kwargs))
if len(l) == 1:
return l[0]
return l
# see if we have an actual file
if isinstance(path_or_buf, compat.string_types):
try:
exists = os.path.exists(path_or_buf)
except (TypeError, ValueError):
exists = False
if exists:
with open(path_or_buf, 'rb') as fh:
return read(fh)
# treat as a binary-like
if isinstance(path_or_buf, compat.binary_type):
fh = None
try:
fh = compat.BytesIO(path_or_buf)
return read(fh)
finally:
if fh is not None:
fh.close()
# a buffer like
if hasattr(path_or_buf, 'read') and compat.callable(path_or_buf.read):
return read(path_or_buf)
raise ValueError('path_or_buf needs to be a string file path or file-like')
dtype_dict = {21: np.dtype('M8[ns]'),
u('datetime64[ns]'): np.dtype('M8[ns]'),
u('datetime64[us]'): np.dtype('M8[us]'),
22: np.dtype('m8[ns]'),
u('timedelta64[ns]'): np.dtype('m8[ns]'),
u('timedelta64[us]'): np.dtype('m8[us]'),
# this is platform int, which we need to remap to np.int64
# for compat on windows platforms
7: np.dtype('int64'),
'category': 'category'
}
def dtype_for(t):
""" return my dtype mapping, whether number or name """
if t in dtype_dict:
return dtype_dict[t]
return np.typeDict.get(t, t)
c2f_dict = {'complex': np.float64,
'complex128': np.float64,
'complex64': np.float32}
# numpy 1.6.1 compat
if hasattr(np, 'float128'):
c2f_dict['complex256'] = np.float128
def c2f(r, i, ctype_name):
"""
Convert strings to complex number instance with specified numpy type.
"""
ftype = c2f_dict[ctype_name]
return np.typeDict[ctype_name](ftype(r) + 1j * ftype(i))
def convert(values):
""" convert the numpy values to a list """
dtype = values.dtype
if is_categorical_dtype(values):
return values
elif is_object_dtype(dtype):
return values.ravel().tolist()
if needs_i8_conversion(dtype):
values = values.view('i8')
v = values.ravel()
if compressor == 'zlib':
_check_zlib()
# return string arrays like they are
if dtype == np.object_:
return v.tolist()
# convert to a bytes array
v = v.tostring()
return ExtType(0, zlib.compress(v))
elif compressor == 'blosc':
_check_blosc()
# return string arrays like they are
if dtype == np.object_:
return v.tolist()
# convert to a bytes array
v = v.tostring()
return ExtType(0, blosc.compress(v, typesize=dtype.itemsize))
# ndarray (on original dtype)
return ExtType(0, v.tostring())
def unconvert(values, dtype, compress=None):
as_is_ext = isinstance(values, ExtType) and values.code == 0
if as_is_ext:
values = values.data
if is_categorical_dtype(dtype):
return values
elif is_object_dtype(dtype):
return np.array(values, dtype=object)
dtype = pandas_dtype(dtype).base
if not as_is_ext:
values = values.encode('latin1')
if compress:
if compress == u'zlib':
_check_zlib()
decompress = zlib.decompress
elif compress == u'blosc':
_check_blosc()
decompress = blosc.decompress
else:
raise ValueError("compress must be one of 'zlib' or 'blosc'")
try:
return np.frombuffer(
_move_into_mutable_buffer(decompress(values)),
dtype=dtype,
)
except _BadMove as e:
# Pull the decompressed data off of the `_BadMove` exception.
# We don't just store this in the locals because we want to
# minimize the risk of giving users access to a `bytes` object
# whose data is also given to a mutable buffer.
values = e.args[0]
if len(values) > 1:
# The empty string and single characters are memoized in many
# string creating functions in the capi. This case should not
# warn even though we need to make a copy because we are only
# copying at most 1 byte.
warnings.warn(
'copying data after decompressing; this may mean that'
' decompress is caching its result',
PerformanceWarning,
)
# fall through to copying `np.fromstring`
# Copy the string into a numpy array.
return np.fromstring(values, dtype=dtype)
def encode(obj):
"""
Data encoder
"""
tobj = type(obj)
if isinstance(obj, Index):
if isinstance(obj, RangeIndex):
return {u'typ': u'range_index',
u'klass': u(obj.__class__.__name__),
u'name': getattr(obj, 'name', None),
u'start': getattr(obj, '_start', None),
u'stop': getattr(obj, '_stop', None),
u'step': getattr(obj, '_step', None)}
elif isinstance(obj, PeriodIndex):
return {u'typ': u'period_index',
u'klass': u(obj.__class__.__name__),
u'name': getattr(obj, 'name', None),
u'freq': u_safe(getattr(obj, 'freqstr', None)),
u'dtype': u(obj.dtype.name),
u'data': convert(obj.asi8),
u'compress': compressor}
elif isinstance(obj, DatetimeIndex):
tz = getattr(obj, 'tz', None)
# store tz info and data as UTC
if tz is not None:
tz = u(tz.zone)
obj = obj.tz_convert('UTC')
return {u'typ': u'datetime_index',
u'klass': u(obj.__class__.__name__),
u'name': getattr(obj, 'name', None),
u'dtype': u(obj.dtype.name),
u'data': convert(obj.asi8),
u'freq': u_safe(getattr(obj, 'freqstr', None)),
u'tz': tz,
u'compress': compressor}
elif isinstance(obj, MultiIndex):
return {u'typ': u'multi_index',
u'klass': u(obj.__class__.__name__),
u'names': getattr(obj, 'names', None),
u'dtype': u(obj.dtype.name),
u'data': convert(obj.values),
u'compress': compressor}
else:
return {u'typ': u'index',
u'klass': u(obj.__class__.__name__),
u'name': getattr(obj, 'name', None),
u'dtype': u(obj.dtype.name),
u'data': convert(obj.values),
u'compress': compressor}
elif isinstance(obj, Categorical):
return {u'typ': u'category',
u'klass': u(obj.__class__.__name__),
u'name': getattr(obj, 'name', None),
u'codes': obj.codes,
u'categories': obj.categories,
u'ordered': obj.ordered,
u'compress': compressor}
elif isinstance(obj, Series):
if isinstance(obj, SparseSeries):
raise NotImplementedError(
'msgpack sparse series is not implemented'
)
# d = {'typ': 'sparse_series',
# 'klass': obj.__class__.__name__,
# 'dtype': obj.dtype.name,
# 'index': obj.index,
# 'sp_index': obj.sp_index,
# 'sp_values': convert(obj.sp_values),
# 'compress': compressor}
# for f in ['name', 'fill_value', 'kind']:
# d[f] = getattr(obj, f, None)
# return d
else:
return {u'typ': u'series',
u'klass': u(obj.__class__.__name__),
u'name': getattr(obj, 'name', None),
u'index': obj.index,
u'dtype': u(obj.dtype.name),
u'data': convert(obj.values),
u'compress': compressor}
elif issubclass(tobj, NDFrame):
if isinstance(obj, SparseDataFrame):
raise NotImplementedError(
'msgpack sparse frame is not implemented'
)
# d = {'typ': 'sparse_dataframe',
# 'klass': obj.__class__.__name__,
# 'columns': obj.columns}
# for f in ['default_fill_value', 'default_kind']:
# d[f] = getattr(obj, f, None)
# d['data'] = dict([(name, ss)
# for name, ss in compat.iteritems(obj)])
# return d
else:
data = obj._data
if not data.is_consolidated():
data = data.consolidate()
# the block manager
return {u'typ': u'block_manager',
u'klass': u(obj.__class__.__name__),
u'axes': data.axes,
u'blocks': [{u'locs': b.mgr_locs.as_array,
u'values': convert(b.values),
u'shape': b.values.shape,
u'dtype': u(b.dtype.name),
u'klass': u(b.__class__.__name__),
u'compress': compressor} for b in data.blocks]
}
elif isinstance(obj, (datetime, date, np.datetime64, timedelta,
np.timedelta64, NaTType)):
if isinstance(obj, Timestamp):
tz = obj.tzinfo
if tz is not None:
tz = u(tz.zone)
freq = obj.freq
if freq is not None:
freq = u(freq.freqstr)
return {u'typ': u'timestamp',
u'value': obj.value,
u'freq': freq,
u'tz': tz}
if isinstance(obj, NaTType):
return {u'typ': u'nat'}
elif isinstance(obj, np.timedelta64):
return {u'typ': u'timedelta64',
u'data': obj.view('i8')}
elif isinstance(obj, timedelta):
return {u'typ': u'timedelta',
u'data': (obj.days, obj.seconds, obj.microseconds)}
elif isinstance(obj, np.datetime64):
return {u'typ': u'datetime64',
u'data': u(str(obj))}
elif isinstance(obj, datetime):
return {u'typ': u'datetime',
u'data': u(obj.isoformat())}
elif isinstance(obj, date):
return {u'typ': u'date',
u'data': u(obj.isoformat())}
raise Exception("cannot encode this datetimelike object: %s" % obj)
elif isinstance(obj, Period):
return {u'typ': u'period',
u'ordinal': obj.ordinal,
u'freq': u(obj.freq)}
elif isinstance(obj, BlockIndex):
return {u'typ': u'block_index',
u'klass': u(obj.__class__.__name__),
u'blocs': obj.blocs,
u'blengths': obj.blengths,
u'length': obj.length}
elif isinstance(obj, IntIndex):
return {u'typ': u'int_index',
u'klass': u(obj.__class__.__name__),
u'indices': obj.indices,
u'length': obj.length}
elif isinstance(obj, np.ndarray):
return {u'typ': u'ndarray',
u'shape': obj.shape,
u'ndim': obj.ndim,
u'dtype': u(obj.dtype.name),
u'data': convert(obj),
u'compress': compressor}
elif isinstance(obj, np.number):
if np.iscomplexobj(obj):
return {u'typ': u'np_scalar',
u'sub_typ': u'np_complex',
u'dtype': u(obj.dtype.name),
u'real': u(obj.real.__repr__()),
u'imag': u(obj.imag.__repr__())}
else:
return {u'typ': u'np_scalar',
u'dtype': u(obj.dtype.name),
u'data': u(obj.__repr__())}
elif isinstance(obj, complex):
return {u'typ': u'np_complex',
u'real': u(obj.real.__repr__()),
u'imag': u(obj.imag.__repr__())}
return obj
def decode(obj):
"""
Decoder for deserializing numpy data types.
"""
typ = obj.get(u'typ')
if typ is None:
return obj
elif typ == u'timestamp':
freq = obj[u'freq'] if 'freq' in obj else obj[u'offset']
return Timestamp(obj[u'value'], tz=obj[u'tz'], freq=freq)
elif typ == u'nat':
return NaT
elif typ == u'period':
return Period(ordinal=obj[u'ordinal'], freq=obj[u'freq'])
elif typ == u'index':
dtype = dtype_for(obj[u'dtype'])
data = unconvert(obj[u'data'], dtype,
obj.get(u'compress'))
return globals()[obj[u'klass']](data, dtype=dtype, name=obj[u'name'])
elif typ == u'range_index':
return globals()[obj[u'klass']](obj[u'start'],
obj[u'stop'],
obj[u'step'],
name=obj[u'name'])
elif typ == u'multi_index':
dtype = dtype_for(obj[u'dtype'])
data = unconvert(obj[u'data'], dtype,
obj.get(u'compress'))
data = [tuple(x) for x in data]
return globals()[obj[u'klass']].from_tuples(data, names=obj[u'names'])
elif typ == u'period_index':
data = unconvert(obj[u'data'], np.int64, obj.get(u'compress'))
d = dict(name=obj[u'name'], freq=obj[u'freq'])
if _is_pandas_legacy_version:
# legacy
return globals()[obj[u'klass']](data, **d)
else:
return globals()[obj[u'klass']]._from_ordinals(data, **d)
elif typ == u'datetime_index':
data = unconvert(obj[u'data'], np.int64, obj.get(u'compress'))
d = dict(name=obj[u'name'], freq=obj[u'freq'], verify_integrity=False)
result = globals()[obj[u'klass']](data, **d)
tz = obj[u'tz']
# reverse tz conversion
if tz is not None:
result = result.tz_localize('UTC').tz_convert(tz)
return result
elif typ == u'category':
from_codes = globals()[obj[u'klass']].from_codes
return from_codes(codes=obj[u'codes'],
categories=obj[u'categories'],
ordered=obj[u'ordered'])
elif typ == u'series':
dtype = dtype_for(obj[u'dtype'])
pd_dtype = pandas_dtype(dtype)
index = obj[u'index']
result = globals()[obj[u'klass']](unconvert(obj[u'data'], dtype,
obj[u'compress']),
index=index,
dtype=pd_dtype,
name=obj[u'name'])
return result
elif typ == u'block_manager':
axes = obj[u'axes']
def create_block(b):
values = _safe_reshape(unconvert(
b[u'values'], dtype_for(b[u'dtype']),
b[u'compress']), b[u'shape'])
# locs handles duplicate column names, and should be used instead
# of items; see GH 9618
if u'locs' in b:
placement = b[u'locs']
else:
placement = axes[0].get_indexer(b[u'items'])
return make_block(values=values,
klass=getattr(internals, b[u'klass']),
placement=placement,
dtype=b[u'dtype'])
blocks = [create_block(b) for b in obj[u'blocks']]
return globals()[obj[u'klass']](BlockManager(blocks, axes))
elif typ == u'datetime':
return parse(obj[u'data'])
elif typ == u'datetime64':
return np.datetime64(parse(obj[u'data']))
elif typ == u'date':
return parse(obj[u'data']).date()
elif typ == u'timedelta':
return timedelta(*obj[u'data'])
elif typ == u'timedelta64':
return np.timedelta64(int(obj[u'data']))
# elif typ == 'sparse_series':
# dtype = dtype_for(obj['dtype'])
# return globals()[obj['klass']](
# unconvert(obj['sp_values'], dtype, obj['compress']),
# sparse_index=obj['sp_index'], index=obj['index'],
# fill_value=obj['fill_value'], kind=obj['kind'], name=obj['name'])
# elif typ == 'sparse_dataframe':
# return globals()[obj['klass']](
# obj['data'], columns=obj['columns'],
# default_fill_value=obj['default_fill_value'],
# default_kind=obj['default_kind']
# )
# elif typ == 'sparse_panel':
# return globals()[obj['klass']](
# obj['data'], items=obj['items'],
# default_fill_value=obj['default_fill_value'],
# default_kind=obj['default_kind'])
elif typ == u'block_index':
return globals()[obj[u'klass']](obj[u'length'], obj[u'blocs'],
obj[u'blengths'])
elif typ == u'int_index':
return globals()[obj[u'klass']](obj[u'length'], obj[u'indices'])
elif typ == u'ndarray':
return unconvert(obj[u'data'], np.typeDict[obj[u'dtype']],
obj.get(u'compress')).reshape(obj[u'shape'])
elif typ == u'np_scalar':
if obj.get(u'sub_typ') == u'np_complex':
return c2f(obj[u'real'], obj[u'imag'], obj[u'dtype'])
else:
dtype = dtype_for(obj[u'dtype'])
try:
return dtype(obj[u'data'])
except:
return dtype.type(obj[u'data'])
elif typ == u'np_complex':
return complex(obj[u'real'] + u'+' + obj[u'imag'] + u'j')
elif isinstance(obj, (dict, list, set)):
return obj
else:
return obj
def pack(o, default=encode,
encoding='utf-8', unicode_errors='strict', use_single_float=False,
autoreset=1, use_bin_type=1):
"""
Pack an object and return the packed bytes.
"""
return Packer(default=default, encoding=encoding,
unicode_errors=unicode_errors,
use_single_float=use_single_float,
autoreset=autoreset,
use_bin_type=use_bin_type).pack(o)
def unpack(packed, object_hook=decode,
list_hook=None, use_list=False, encoding='utf-8',
unicode_errors='strict', object_pairs_hook=None,
max_buffer_size=0, ext_hook=ExtType):
"""
Unpack a packed object, return an iterator
Note: packed lists will be returned as tuples
"""
return Unpacker(packed, object_hook=object_hook,
list_hook=list_hook,
use_list=use_list, encoding=encoding,
unicode_errors=unicode_errors,
object_pairs_hook=object_pairs_hook,
max_buffer_size=max_buffer_size,
ext_hook=ext_hook)
class Packer(_Packer):
def __init__(self, default=encode,
encoding='utf-8',
unicode_errors='strict',
use_single_float=False,
autoreset=1,
use_bin_type=1):
super(Packer, self).__init__(default=default,
encoding=encoding,
unicode_errors=unicode_errors,
use_single_float=use_single_float,
autoreset=autoreset,
use_bin_type=use_bin_type)
class Unpacker(_Unpacker):
def __init__(self, file_like=None, read_size=0, use_list=False,
object_hook=decode,
object_pairs_hook=None, list_hook=None, encoding='utf-8',
unicode_errors='strict', max_buffer_size=0, ext_hook=ExtType):
super(Unpacker, self).__init__(file_like=file_like,
read_size=read_size,
use_list=use_list,
object_hook=object_hook,
object_pairs_hook=object_pairs_hook,
list_hook=list_hook,
encoding=encoding,
unicode_errors=unicode_errors,
max_buffer_size=max_buffer_size,
ext_hook=ext_hook)
class Iterator(object):
""" manage the unpacking iteration,
close the file on completion """
def __init__(self, path, **kwargs):
self.path = path
self.kwargs = kwargs
def __iter__(self):
needs_closing = True
try:
# see if we have an actual file
if isinstance(self.path, compat.string_types):
try:
path_exists = os.path.exists(self.path)
except TypeError:
path_exists = False
if path_exists:
fh = open(self.path, 'rb')
else:
fh = compat.BytesIO(self.path)
else:
if not hasattr(self.path, 'read'):
fh = compat.BytesIO(self.path)
else:
# a file-like
needs_closing = False
fh = self.path
unpacker = unpack(fh)
for o in unpacker:
yield o
finally:
if needs_closing:
fh.close()