Skip to content

Commit 6bd74fa

Browse files
authored
DOC: Add missing punctuation to pandas documentation (#60982)
* DOC: Add missing punctuation in text.rst * DOC: Also add missing punctuation in arrays.rst
1 parent 2b466c2 commit 6bd74fa

File tree

2 files changed

+9
-9
lines changed

2 files changed

+9
-9
lines changed

Diff for: doc/source/reference/arrays.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ is an :class:`ArrowDtype`.
6161
support as NumPy including first-class nullability support for all data types, immutability and more.
6262

6363
The table below shows the equivalent pyarrow-backed (``pa``), pandas extension, and numpy (``np``) types that are recognized by pandas.
64-
Pyarrow-backed types below need to be passed into :class:`ArrowDtype` to be recognized by pandas e.g. ``pd.ArrowDtype(pa.bool_())``
64+
Pyarrow-backed types below need to be passed into :class:`ArrowDtype` to be recognized by pandas e.g. ``pd.ArrowDtype(pa.bool_())``.
6565

6666
=============================================== ========================== ===================
6767
PyArrow type pandas extension type NumPy type
@@ -114,7 +114,7 @@ values.
114114

115115
ArrowDtype
116116

117-
For more information, please see the :ref:`PyArrow user guide <pyarrow>`
117+
For more information, please see the :ref:`PyArrow user guide <pyarrow>`.
118118

119119
.. _api.arrays.datetime:
120120

@@ -495,7 +495,7 @@ a :class:`CategoricalDtype`.
495495
CategoricalDtype.categories
496496
CategoricalDtype.ordered
497497

498-
Categorical data can be stored in a :class:`pandas.Categorical`
498+
Categorical data can be stored in a :class:`pandas.Categorical`:
499499

500500
.. autosummary::
501501
:toctree: api/

Diff for: doc/source/user_guide/text.rst

+6-6
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ Text data types
1313

1414
There are two ways to store text data in pandas:
1515

16-
1. ``object`` -dtype NumPy array.
16+
1. ``object`` dtype NumPy array.
1717
2. :class:`StringDtype` extension type.
1818

1919
We recommend using :class:`StringDtype` to store text data.
@@ -40,20 +40,20 @@ to significantly increase the performance and lower the memory overhead of
4040
and parts of the API may change without warning.
4141

4242
For backwards-compatibility, ``object`` dtype remains the default type we
43-
infer a list of strings to
43+
infer a list of strings to:
4444

4545
.. ipython:: python
4646
4747
pd.Series(["a", "b", "c"])
4848
49-
To explicitly request ``string`` dtype, specify the ``dtype``
49+
To explicitly request ``string`` dtype, specify the ``dtype``:
5050

5151
.. ipython:: python
5252
5353
pd.Series(["a", "b", "c"], dtype="string")
5454
pd.Series(["a", "b", "c"], dtype=pd.StringDtype())
5555
56-
Or ``astype`` after the ``Series`` or ``DataFrame`` is created
56+
Or ``astype`` after the ``Series`` or ``DataFrame`` is created:
5757

5858
.. ipython:: python
5959
@@ -88,7 +88,7 @@ Behavior differences
8888
^^^^^^^^^^^^^^^^^^^^
8989

9090
These are places where the behavior of ``StringDtype`` objects differ from
91-
``object`` dtype
91+
``object`` dtype:
9292

9393
l. For ``StringDtype``, :ref:`string accessor methods<api.series.str>`
9494
that return **numeric** output will always return a nullable integer dtype,
@@ -102,7 +102,7 @@ l. For ``StringDtype``, :ref:`string accessor methods<api.series.str>`
102102
s.str.count("a")
103103
s.dropna().str.count("a")
104104
105-
Both outputs are ``Int64`` dtype. Compare that with object-dtype
105+
Both outputs are ``Int64`` dtype. Compare that with object-dtype:
106106

107107
.. ipython:: python
108108

0 commit comments

Comments
 (0)