You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
not raising the error if up to 10000 rows are taken:
# NO error:df.iloc[:10000].multiply(ser, axis=1)
# error:df.iloc[:10001].multiply(ser, axis=1)
Problem description
Multiplying a DataFrame with more than 10k rows with a Series with the keyword axis=1 raises the following error:
AttributeError: 'numpy.dtype' object has no attribute 'value_counts'
It seems like another path is taken, if more than 10k rows are multiplied.
Version 0.24.2 did NOT reproduce the error. The error occurs since 0.25.0
Omitting the axis keyword seems to solve the problem, but is it safe to do so in all cases?
Any ideas for a workaround except for solving it in chunks?
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Windows
OS-release : 7
machine : AMD64
processor : Intel64 Family 6 Model 63 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : de
LOCALE : de_DE.ISO8859-1
Code Sample raising the error:
not raising the error if up to 10000 rows are taken:
Problem description
Multiplying a DataFrame with more than 10k rows with a Series with the keyword
axis=1
raises the following error:Omitting the
axis
keyword seems to solve the problem, but is it safe to do so in all cases?Any ideas for a workaround except for solving it in chunks?
Output of
pd.show_versions()
pandas : 0.25.0
numpy : 1.16.4
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.2
setuptools : 41.0.1
Cython : 0.29.13
pytest : 5.0.1
hypothesis : None
sphinx : 2.1.2
blosc : None
feather : None
xlsxwriter : 1.1.8
lxml.etree : 4.4.1
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : 4.8.0
bottleneck : 1.2.1
fastparquet : None
gcsfs : None
lxml.etree : 4.4.1
matplotlib : 3.1.0
numexpr : 2.7.0
odfpy : None
openpyxl : 2.6.2
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : 1.3.7
tables : 3.5.2
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : 1.1.8
The text was updated successfully, but these errors were encountered: