-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncc.cpp
231 lines (185 loc) · 6.72 KB
/
ncc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <iostream>
#include <ceres/ceres.h>
#include <string>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <vector>
#include <fstream>
#include <chrono>
#include <assert.h>
class quat{
public:
quat(double t, double x, double y, double z, double w):
_t(t), _q(Eigen::Quaterniond(w, x, y, z)){}
quat(double t, Eigen::Quaterniond q):
_t(t), _q(q){}
Eigen::Quaterniond _q;
double _t;
};
class gyr{
public:
gyr(double t, Eigen::Vector3d w):
_t(t), _w(w){}
double _t;
Eigen::Vector3d _w;
};
Eigen::Quaterniond expmap(const Eigen::Vector3d &w) {
Eigen::AngleAxisd aa(w.norm(), w.stableNormalized());
Eigen::Quaterniond q;
q = aa;
return q;
}
std::vector<quat> loadData(const std::string& filename){
std::fstream file(filename);
std::vector<quat> qs;
double t, x, y, z, w, _;
while(file >> t >> _ >> _ >> _ >> x >> y >> z >> w){
qs.emplace_back(quat(t, x, y, z ,w));
}
return qs;
}
std::vector<quat> loadGyrData(const std::string& filename){
std::fstream file(filename);
std::vector<quat> qs;
std::vector<gyr> gs;
double t, x, y, z;
char c;
while(file >> t >> c >> x >> c >> y >> c >> z){
gs.emplace_back(gyr(t, Eigen::Vector3d(x, y, z)));
}
Eigen::Quaterniond cur_q(1, 0, 0, 0);
for(size_t i = 0; i < gs.size() - 1; ++i){
qs.emplace_back(quat(gs[i]._t, cur_q.x(), cur_q.y(), cur_q.z(), cur_q.w()));
auto& g1 = gs[i];
auto& g2 = gs[i + 1];
double dt = g2._t - g1._t;
Eigen::Vector3d r = (g1._w + g2._w) * dt / 2.0;
cur_q = expmap(r) * cur_q;
}
return qs;
}
std::vector<Eigen::Quaterniond> interplate(const std::vector<quat>& q, const std::vector<double>& ts){
std::vector<Eigen::Quaterniond> res;
size_t pos = 0;
for(size_t i = 0; i < ts.size(); ++i){
while(pos < q.size() && ts[i] >= q[pos]._t) ++ pos;
if(pos >= q.size()) break;
auto q_start = q[pos - 1];
auto q_end = q[pos];
double ratio = (ts[i] - q_start._t) / (q_end._t - q_start._t);
auto q_slerp = q_start._q.slerp(ratio, q_end._q);
res.push_back(q_slerp);
}
return res;
}
void saveRotation(std::string path, const std::vector<double> logs){
std::ofstream file(path);
for(size_t i = 0; i < logs.size(); ++i){
file << logs[i] << std::endl;
}
file.close();
}
void saveResult(const std::string& path,
const std::vector<double>& offset,
const std::vector<double>& tau,
const std::vector<double>& ncc){
std::ofstream file(path);
for(size_t i = 0; i < offset.size(); ++i){
file << offset[i] << " " << tau[i] << " " << ncc[i] << std::endl;
}
file.close();
}
double compute_NCC(const std::vector<quat>& qv,
const std::vector<quat>& qi,
double offset=0.0,
double init_offset=0.0,
double tau=0.5,
size_t patten_len=1000,
double start_t=1.0,
double epsilon=0.1,
std::string save_name=""){
double end_t = std::min(qi.back()._t - init_offset + offset, qv.back()._t) - tau - epsilon;
std::vector<double> base_time;
for(size_t i = 0; i < qi.size(); ++i){
if(qi[i]._t - init_offset < start_t) continue;
if(qi[i]._t - init_offset >= end_t) break;
base_time.push_back(qi[i]._t);
if(base_time.size() >= patten_len) break;
}
std::vector<double> vqvT1, vqvT2, vqiT1, vqiT2;
for(auto& t: base_time) vqiT1.push_back(t);
for(auto& t: base_time) vqiT2.push_back(t + tau);
for(auto& t: base_time) vqvT1.push_back(t - init_offset + offset);
for(auto& t: base_time) vqvT2.push_back(t - init_offset + offset + tau);
auto qi1 = interplate(qi, vqiT1);
auto qi2 = interplate(qi, vqiT2);
auto qv1 = interplate(qv, vqvT1);
auto qv2 = interplate(qv, vqvT2);
std::vector<double> logs_qi, logs_qv;
for(size_t i = 0; i < base_time.size(); ++i){
Eigen::Quaterniond delta_qi = qi1[i].inverse() * qi2[i];
Eigen::Quaterniond delta_qv = qv1[i].inverse() * qv2[i];
Eigen::AngleAxisd log_qi(delta_qi);
Eigen::AngleAxisd log_qv(delta_qv);
logs_qi.push_back(log_qi.angle());
logs_qv.push_back(log_qv.angle());
}
if (save_name != ""){
saveRotation("./tmp/vicon_rotation_" + save_name + ".txt", logs_qv);
saveRotation("./tmp/phone_rotation_" + save_name + ".txt", logs_qi);
}
double num1 ,num2 ,num3;
num1 = num2 = num3 = 0.0;
for(size_t i = 0; i < logs_qi.size(); i++){
num1 += std::abs(logs_qi[i] * logs_qv[i]);
num2 += std::abs(logs_qi[i] * logs_qi[i]);
num3 += std::abs(logs_qv[i] * logs_qv[i]);
}
double ncc = num1 / std::sqrt(num2 * num3);
return ncc;
}
int main(int argc, char** argv){
if(argc < 3){
std::cerr << "input: ./align_offset victo_gt_path estimated_traj_path" << std::endl;
exit(0);
}
std::string qv_path = argv[1];
std::string qi_path = argv[2];
std::cout << std::endl;
std::cout << "--vicon traj: " << qv_path << std::endl;
std::cout << "--phone traj: " << qi_path << std::endl;
std::cout << std::endl;
std::vector<quat> qv = loadData(qv_path);
std::vector<quat> qi = loadData(qi_path);
// std::vector<quat> qi = loadGyrData(qi_path);
std::cout << "--vicon traj data size: " << qv.size() << std::endl;
std::cout << "--phone traj data size: " << qi.size() << std::endl;
double init_offset = qi[0]._t - qv[0]._t;
double offset_lim[2] = {-1.0, 5.0};
double taus[5] = {1, 2, 3, 4, 5};
std::vector<double> vOffset, vNCC, vTau;
double max_ncc = 0;
double best_offset = -10;
for(double tau = 1; tau < 6; ++tau){
for(double offset = offset_lim[0]; offset < offset_lim[1]; offset += 0.001){
double ncc = compute_NCC(qv, qi, offset, init_offset, tau);
printf("-- offset: %f, tau: %f, NCC: %f\n", offset, tau, ncc);
vOffset.push_back(offset);
vNCC.push_back(ncc);
vTau.push_back(tau);
if (tau == 1 && max_ncc < ncc){
max_ncc = ncc;
best_offset = offset;
}
}
}
std::cout << std::endl;
std::cout << "--max ncc :" << max_ncc << std::endl;
std::cout << "--best offset :" << best_offset << std::endl;
compute_NCC(qv, qi, 0, init_offset, 1.0, 1000, 1.0, 0.1, "before");
double set_offet = best_offset;
compute_NCC(qv, qi, set_offet, init_offset, 1.0, 1000, 1.0, 0.1, "after");
std::string save_dir = "./tmp/result_offset_ncc.txt";
saveResult(save_dir, vOffset, vTau, vNCC);
return 0;
}