-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlanetary Orbit Simulator.py
executable file
·258 lines (191 loc) · 8.79 KB
/
Planetary Orbit Simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
'''
IMPORTANT:
Before running this program, change the working directory to the file containing
this Python file and these images: Background.png, Background2.png, Button.gif
In some cases, the following error message might show up:
'TclError: image "pyimage(somenumber)" doesn't exist'
Restart Python kernel to fix this error.
'''
import math
import turtle
import Tkinter as tk
from PIL import Image, ImageTk
import numpy as np
from matplotlib import pyplot as plt
import webbrowser
G = 6.67408e-11
AU = (149.6e6 * 1000) # scale: 100 pixels = 1 AU.
scale = 250 / AU
root = tk.Tk() # creates a Tkinter window
root.title('Planetary Orbit Simulator') # sets title for window
root.geometry("700x600") # sets dimensions for window
im = Image.open('Background.png') # imports the image
tkimage = ImageTk.PhotoImage(im)
im1 = tk.Label(root, image=tkimage)
im1.place(x=0, y=0, relwidth=1, relheight=1) # sets the image as a background
def get_new_win(): # function for getting a new window
NewWin = tk.Toplevel(root) # creates new window
NewWin.title('Planetary Orbit Simulator')
NewWin.geometry('500x650')
im2 = Image.open('Background2.png')
tkimage1 = ImageTk.PhotoImage(im2)
im3 = tk.Label(NewWin, image=tkimage1)
im3.place(x=0, y=0, relwidth=1, relheight=1)
def quit_win(): # function for quitting the program
NewWin.destroy()
turtle.bye()
QuitButton = tk.Button(NewWin, text='Quit', command=quit_win, height=2,
width=10, bg='gray7', fg='white') # creates a quit button
QuitButton.place(relx=.5, rely=.85, anchor="c") # places button on window
NewWin.protocol("WM_DELETE_WINDOW", quit_win)
def plot_mercury(): # function for plotting velocity graph for Mercury
x = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
y = np.array([35701, 45890, 56785, 39190, 36630, 50913, 52074, 36976,
38609, 55892])
plt.plot(x, y, color='k')
plt.title('Velocity of Mercury', fontsize=16)
plt.xlabel('Steps (weeks)', fontsize=12)
plt.ylabel('Velocity $(m/s)$', fontsize=12)
plt.show()
plot1 = tk.Button(NewWin, text='Mercury', command=plot_mercury, height=1,
width=11, bg='black', fg='white') # creates button which plots graph
plot1.place(relx=.2, rely=.7, anchor="c") # places the button on window
def plot_venus():
x = np.array([10, 20, 30, 40, 50, 60,70, 80, 90, 100])
y = np.array([38006, 32402, 32866, 38234, 33731, 31858, 37352, 35415,
31466, 35769]) # data found from animation
plt.plot(x, y, color='y')
plt.title('Velocity of Venus', fontsize=16)
plt.xlabel('Steps (weeks)', fontsize=12)
plt.ylabel('Velocity $(m/s)$', fontsize=12)
plt.show()
plot2 = tk.Button(NewWin, text='Venus', command=plot_venus, height=1,
width=11, bg='black', fg='white')
plot2.place(relx=.4, rely=.7, anchor="c")
def plot_earth():
x = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
y = np.array([31374, 30861, 28837, 27948, 29058, 31059, 31244, 29321,
27984, 28615])
plt.plot(x, y, color='b')
plt.title('Velocity of Earth', fontsize=16)
plt.xlabel('Steps (weeks)', fontsize=12)
plt.ylabel('Velocity $(m/s)$', fontsize=12)
plt.show()
plot3 = tk.Button(NewWin, text='Earth', command=plot_earth, height=1,
width=11, bg='black', fg='white')
plot3.place(relx=.6, rely=.7, anchor="c")
def plot_mars():
x = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
y = np.array([24516, 24868, 24918, 24612, 24172, 23712, 23431, 23422,
23686, 24139])
plt.plot(x, y, color='r')
plt.title('Velocity of Mars', fontsize=16)
plt.xlabel('Steps (weeks)', fontsize=12)
plt.ylabel('Velocity $(m/s)$', fontsize=12)
plt.show()
plot4 = tk.Button(NewWin, text='Mars', command=plot_mars, height=1,
width=11, bg='black', fg='white')
plot4.place(relx=.8, rely=.7, anchor="c")
class Simulator(turtle.Turtle): # class for creating turtle animation
name = 'Simulator'
mass = None
vx = vy = 0.000 # intial value
px = py = 0.000
def gravity(self, other): # function for calculation of force
sx, sy = self.px, self.py
ox, oy = other.px, other.py
dx = (ox - sx)
dy = (oy - sy)
d = math.sqrt(dx**2 + dy**2) # infinitesimally small distance
f = G * self.mass * other.mass / (d**2) # from Newton's Gravity Law
theta = math.atan2(dy, dx)
fx = math.cos(theta) * f # x-component of force
fy = math.sin(theta) * f # y-component of force
return fx, fy
def data(step, planets): # function for printing data
print('Step #{}'.format(step))
for planet in planets:
s = '{:<8} Pos.={:>6.2f} {:>6.2f} Vel.={:>10.3f} {:>10.3f}'.format(
planet.name, planet.px/AU, planet.py/AU, planet.vx, planet.vy)
print(s)
print()
def loop(planets): # function for drawing orbits
timestep = 24*3600*7 # 7 days
for planet in planets:
planet.penup()
planet.hideturtle()
step = 1
while True:
data(step, planets)
step += 1 # adds 1 after each step
force = {} # creates array for force
for planet in planets:
total_fx = total_fy = 0.0
for other in planets:
if planet is other:
continue
fx, fy = planet.gravity(other)
total_fx += fx
total_fy += fy
force[planet] = (total_fx, total_fy) # total force on planet
for planet in planets:
fx, fy = force[planet]
planet.vx += fx / planet.mass * timestep
# calculates vx after timestep
planet.vy += fy / planet.mass * timestep
planet.px += planet.vx * timestep # calculates vx after timestep
planet.py += planet.vy * timestep
planet.goto(planet.px*scale, planet.py*scale)
# calculates position according to scale
planet.dot(6) # prints dot at positon
def main(): # function for adding objects to turtle animation
'''Data taken from NASA website:
http://nssdc.gsfc.nasa.gov/planetary/factsheet/'''
sun = Simulator()
sun.name = 'Sun'
sun.mass = 1.98855 * 10**30
sun.pencolor('yellow')
mercury = Simulator()
mercury.name = 'Mercury'
mercury.mass = 0.33011 * 10**24
mercury.px = 0.3870 * AU
mercury.vy = 47.362 * 1000
mercury.pencolor('brown')
venus = Simulator()
venus.name = 'Venus'
venus.mass = 4.8675 * 10**24
venus.px = 0.7230 * AU
venus.vy = -35.020 * 1000
venus.pencolor('orange')
earth = Simulator()
earth.name = 'Earth'
earth.mass = 5.9724 * 10**24
earth.px = 1.000 * AU
earth.vy = 29.783 * 1000
earth.pencolor('blue')
mars = Simulator()
mars.name = 'Mars'
mars.mass = 0.64171 * 10**24
mars.px = 1.524 * AU
mars.vy = 24.077 * 1000
mars.pencolor('red')
loop([sun, mercury, venus, earth, mars]) # creates a loop for objects
turtle.bgcolor("black") # sets background for turtle window
turtle.setup(800, 800) # sets screen size for turtle window
app = main()
app.mainloop() # starts animation
im2 = tk.PhotoImage(file="Button.gif")
NewWinButton = tk.Button(root, command=get_new_win, bg='black')
NewWinButton.config(image=im2)
NewWinButton.place(relx=.5, rely=.625, anchor="c")
def latex():
webbrowser.open_new('Planetary Orbit Simulator Report.pdf')
ReportButton = tk.Button(root, text='LaTeX Report', command=latex, height=2,
width=15, bg='black', fg='white')
ReportButton.place(relx=.4, rely=.85, anchor="c")
def quit_win2():
root.destroy()
QuitButton2 = tk.Button(root, text='Quit', command=quit_win2, height=2,
width=15, bg='black', fg='white')
QuitButton2.place(relx=.6, rely=.85, anchor="c")
root.mainloop()