-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheigen_test.cpp
98 lines (72 loc) · 2.37 KB
/
eigen_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
//
// Copyright Chong Peng 2017
//
#include <Eigen/Dense>
#include <iostream>
#include "eigen_interface.h"
#include "type_traits.h"
#include "symm_davidson_diag.h"
#include "nonsymm_davidson_diag.h"
using namespace code_example;
int main() {
std::cout.precision(12);
std::cout << "Davidson Diagnolization Using Eigen Matrix \n";
/// typedef the Array type to use
using Array = RowMatrix<double>;
// variables
const std::size_t n = 500;
const double sparse = 0.1;
const std::size_t n_roots = 5; // number of roots to solve in davidson
const double converge = 1.0e-10; // convergence threshold in davidson
const std::size_t max_iter = 40; // max iteration in davidson
// initialize symmetric matrix
RowMatrix<double> A = RowMatrix<double>::Zero(n, n);
for (auto i = 0; i < n; i++) {
A(i, i) = i + 1;
}
A = A + sparse * RowMatrix<double>::Random(n, n);
RowMatrix<double> A_T = A.transpose();
A = 0.5 * (A_T + A);
EigenVector<double> A_diagonal = A.diagonal();
// eigen solve
Eigen::SelfAdjointEigenSolver<RowMatrix<double>> es(A);
EigenVector<double> e = es.eigenvalues().segment(0, n_roots);
std::cout << "Reference Result from EigenSolve: " << std::endl << e << std::endl;
/// construct the SymmDavidsonDiag object
SymmDavidsonDiag<Array> dvd(n_roots);
/// make the initial guess use unit vector
std::vector<Array> guess(n_roots);
{
Array guess_all = Array::Identity(n, n_roots);
for(std::size_t i = 0; i < n_roots; i++){
guess[i] = guess_all.col(i);
}
}
/// make the preconditioner
auto pred = [&A_diagonal](const EigenVector<double> &e,
std::vector<Array> &guess) {
for (std::size_t i = 0; i < guess.size(); i++) {
const auto ei = e[i];
auto& guess_i = guess[i];
assert(guess_i.cols() == 1);
const auto n_r = guess_i.rows();
for(std::size_t i = 0; i < n_r; i++){
guess_i(i,0) = guess_i(i,0)/ (ei - A_diagonal[i]);
}
}
};
/// make the operator
auto op = [& A](const std::vector<Array>& vec){
const std::size_t n = vec.size();
std::vector<Array> HC(n);
for(std::size_t i = 0; i < n; i++){
HC[i] = A*vec[i];
}
return HC;
};
/// solve
auto eig = dvd.solve(guess, op, pred, converge, max_iter);
std::cout << "SymmDavidsonDiag result: " << std::endl;
std::cout << eig << std::endl;
return 0;
}